(推理模型如何推理?

IF 4.1 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Subbarao Kambhampati, Kaya Stechly, Karthik Valmeekam
{"title":"(推理模型如何推理?","authors":"Subbarao Kambhampati, Kaya Stechly, Karthik Valmeekam","doi":"10.1111/nyas.15339","DOIUrl":null,"url":null,"abstract":"We provide a broad unifying perspective on the recent breed of large reasoning models such as OpenAI o1 and DeepSeek R1, including their promise, sources of power, misconceptions, and limitations.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"60 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(How) Do reasoning models reason?\",\"authors\":\"Subbarao Kambhampati, Kaya Stechly, Karthik Valmeekam\",\"doi\":\"10.1111/nyas.15339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a broad unifying perspective on the recent breed of large reasoning models such as OpenAI o1 and DeepSeek R1, including their promise, sources of power, misconceptions, and limitations.\",\"PeriodicalId\":8250,\"journal\":{\"name\":\"Annals of the New York Academy of Sciences\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the New York Academy of Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1111/nyas.15339\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.15339","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们从一个广泛统一的视角来看待最近出现的大型推理模型,如 OpenAI o1 和 DeepSeek R1,包括它们的前景、力量来源、误解和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(How) Do reasoning models reason?
We provide a broad unifying perspective on the recent breed of large reasoning models such as OpenAI o1 and DeepSeek R1, including their promise, sources of power, misconceptions, and limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of the New York Academy of Sciences
Annals of the New York Academy of Sciences 综合性期刊-综合性期刊
CiteScore
11.00
自引率
1.90%
发文量
193
审稿时长
2-4 weeks
期刊介绍: Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信