通过分子动力学模拟揭示透明质酸电反应型咔嗒水凝胶与导电聚合物的半互穿

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
David Zanuy , Víctor Castrejón-Comas , Joel Sánchez-Morán , Adrian Fontana-Escartín , Marc Arnau , Maria M. Pérez-Madrigal , Carlos Alemán
{"title":"通过分子动力学模拟揭示透明质酸电反应型咔嗒水凝胶与导电聚合物的半互穿","authors":"David Zanuy ,&nbsp;Víctor Castrejón-Comas ,&nbsp;Joel Sánchez-Morán ,&nbsp;Adrian Fontana-Escartín ,&nbsp;Marc Arnau ,&nbsp;Maria M. Pérez-Madrigal ,&nbsp;Carlos Alemán","doi":"10.1016/j.polymer.2025.128395","DOIUrl":null,"url":null,"abstract":"<div><div>Electroresponsive hydrogels have been prepared by semi-interpenetrating a hyaluronic acid-based click-hydrogel (clickHA) with different concentrations of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-MeOH). The morphology of the resulting hydrogels, which showed excellent electrochemical response, consisted in a homogeneous distribution of PEDOT-MeOH nanoparticles decorating the pore well of the honeycomb-like clickHA hydrogel. In order to investigate this particular organization, atomistic molecular dynamics simulations have been conducted on clickHA hydrogels with and without hydroxymethyl-3,4-ethylenedioxythiophene (EDOT-MeOH) monomers. Results have shown that, while EDOT-MeOH molecules do not affect the physical and structural characteristics of clickHA, infiltrated monomers rapidly tend to aggregate inside the hydrogel, forming small clusters stabilized by π-π stacking interactions. These clusters probably act as polymerization nuclei for the formation of PEDOT-MeOH nanoparticles, which explains not only the morphology observed but also the remarkable electrochemical response of clickHA/PEDOT-MeOH hydrogels.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"327 ","pages":"Article 128395"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the semi-interpenetration with conducting polymer of electroresponsive click-hydrogels made of hyaluronic acid via molecular dynamics simulations\",\"authors\":\"David Zanuy ,&nbsp;Víctor Castrejón-Comas ,&nbsp;Joel Sánchez-Morán ,&nbsp;Adrian Fontana-Escartín ,&nbsp;Marc Arnau ,&nbsp;Maria M. Pérez-Madrigal ,&nbsp;Carlos Alemán\",\"doi\":\"10.1016/j.polymer.2025.128395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electroresponsive hydrogels have been prepared by semi-interpenetrating a hyaluronic acid-based click-hydrogel (clickHA) with different concentrations of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-MeOH). The morphology of the resulting hydrogels, which showed excellent electrochemical response, consisted in a homogeneous distribution of PEDOT-MeOH nanoparticles decorating the pore well of the honeycomb-like clickHA hydrogel. In order to investigate this particular organization, atomistic molecular dynamics simulations have been conducted on clickHA hydrogels with and without hydroxymethyl-3,4-ethylenedioxythiophene (EDOT-MeOH) monomers. Results have shown that, while EDOT-MeOH molecules do not affect the physical and structural characteristics of clickHA, infiltrated monomers rapidly tend to aggregate inside the hydrogel, forming small clusters stabilized by π-π stacking interactions. These clusters probably act as polymerization nuclei for the formation of PEDOT-MeOH nanoparticles, which explains not only the morphology observed but also the remarkable electrochemical response of clickHA/PEDOT-MeOH hydrogels.</div></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"327 \",\"pages\":\"Article 128395\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386125003817\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386125003817","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

用不同浓度的聚(羟基甲基-3,4-乙二氧噻吩)(PEDOT-MeOH)半互穿透明质酸基咔嗒水凝胶(clickHA)制备了电反应性水凝胶。所制备的水凝胶表现出优异的电化学响应,其形貌为均匀分布的PEDOT-MeOH纳米颗粒装饰蜂窝状clickHA水凝胶的孔孔。为了研究这种特殊的组织,对含有和不含羟基甲基-3,4-乙烯二氧噻吩(EDOT-MeOH)单体的clickHA水凝胶进行了原子分子动力学模拟。结果表明,虽然EDOT-MeOH分子不影响clickHA的物理和结构特性,但渗透的单体倾向于在水凝胶内部迅速聚集,形成π-π堆叠相互作用稳定的小簇。这些团簇可能作为聚合核形成PEDOT-MeOH纳米颗粒,这不仅解释了所观察到的形貌,而且解释了clickHA/PEDOT-MeOH水凝胶的显著电化学响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the semi-interpenetration with conducting polymer of electroresponsive click-hydrogels made of hyaluronic acid via molecular dynamics simulations

Unraveling the semi-interpenetration with conducting polymer of electroresponsive click-hydrogels made of hyaluronic acid via molecular dynamics simulations

Unraveling the semi-interpenetration with conducting polymer of electroresponsive click-hydrogels made of hyaluronic acid via molecular dynamics simulations
Electroresponsive hydrogels have been prepared by semi-interpenetrating a hyaluronic acid-based click-hydrogel (clickHA) with different concentrations of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-MeOH). The morphology of the resulting hydrogels, which showed excellent electrochemical response, consisted in a homogeneous distribution of PEDOT-MeOH nanoparticles decorating the pore well of the honeycomb-like clickHA hydrogel. In order to investigate this particular organization, atomistic molecular dynamics simulations have been conducted on clickHA hydrogels with and without hydroxymethyl-3,4-ethylenedioxythiophene (EDOT-MeOH) monomers. Results have shown that, while EDOT-MeOH molecules do not affect the physical and structural characteristics of clickHA, infiltrated monomers rapidly tend to aggregate inside the hydrogel, forming small clusters stabilized by π-π stacking interactions. These clusters probably act as polymerization nuclei for the formation of PEDOT-MeOH nanoparticles, which explains not only the morphology observed but also the remarkable electrochemical response of clickHA/PEDOT-MeOH hydrogels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信