Rosa Pascual,Jinming Cheng,Amelia H De Smet,Bianca D Capaldo,Minhsuang Tsai,Somayeh Kordafshari,François Vaillant,Xiaoyu Song,Göknur Giner,Michael J G Milevskiy,Felicity C Jackling,Bhupinder Pal,Toby Dite,Jumana Yousef,Laura F Dagley,Gordon K Smyth,Naiyang Fu,Geoffrey J Lindeman,Yunshun Chen,Jane E Visvader
{"title":"乳腺形态发生和肿瘤发生过程中成纤维细胞等级动力学。","authors":"Rosa Pascual,Jinming Cheng,Amelia H De Smet,Bianca D Capaldo,Minhsuang Tsai,Somayeh Kordafshari,François Vaillant,Xiaoyu Song,Göknur Giner,Michael J G Milevskiy,Felicity C Jackling,Bhupinder Pal,Toby Dite,Jumana Yousef,Laura F Dagley,Gordon K Smyth,Naiyang Fu,Geoffrey J Lindeman,Yunshun Chen,Jane E Visvader","doi":"10.1038/s44318-025-00422-3","DOIUrl":null,"url":null,"abstract":"Fibroblasts form a major component of the stroma in normal mammary tissue and breast tumors. Here, we have applied longitudinal single-cell transcriptome profiling of >45,000 fibroblasts in the mouse mammary gland across five different developmental stages and during oncogenesis. In the normal gland, diverse stromal populations were resolved, including lobular-like fibroblasts, committed preadipocytes and adipogenesis-regulatory, as well as cycling fibroblasts in puberty and pregnancy. These specialized cell types appear to emerge from CD34high mesenchymal progenitor cells, accompanied by elevated Hedgehog signaling. During late tumorigenesis, heterogeneous cancer-associated fibroblasts (CAFs) were identified in mouse models of breast cancer, including a population of CD34- myofibroblastic CAFs (myCAFs) that were transcriptionally and phenotypically similar to senescent CAFs. Moreover, Wnt9a was demonstrated to be a regulator of senescence in CD34- myCAFs. These findings reflect a diverse and hierarchically organized stromal compartment in the normal mammary gland that provides a framework to better understand fibroblasts in normal and cancerous states.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibroblast hierarchy dynamics during mammary gland morphogenesis and tumorigenesis.\",\"authors\":\"Rosa Pascual,Jinming Cheng,Amelia H De Smet,Bianca D Capaldo,Minhsuang Tsai,Somayeh Kordafshari,François Vaillant,Xiaoyu Song,Göknur Giner,Michael J G Milevskiy,Felicity C Jackling,Bhupinder Pal,Toby Dite,Jumana Yousef,Laura F Dagley,Gordon K Smyth,Naiyang Fu,Geoffrey J Lindeman,Yunshun Chen,Jane E Visvader\",\"doi\":\"10.1038/s44318-025-00422-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fibroblasts form a major component of the stroma in normal mammary tissue and breast tumors. Here, we have applied longitudinal single-cell transcriptome profiling of >45,000 fibroblasts in the mouse mammary gland across five different developmental stages and during oncogenesis. In the normal gland, diverse stromal populations were resolved, including lobular-like fibroblasts, committed preadipocytes and adipogenesis-regulatory, as well as cycling fibroblasts in puberty and pregnancy. These specialized cell types appear to emerge from CD34high mesenchymal progenitor cells, accompanied by elevated Hedgehog signaling. During late tumorigenesis, heterogeneous cancer-associated fibroblasts (CAFs) were identified in mouse models of breast cancer, including a population of CD34- myofibroblastic CAFs (myCAFs) that were transcriptionally and phenotypically similar to senescent CAFs. Moreover, Wnt9a was demonstrated to be a regulator of senescence in CD34- myCAFs. These findings reflect a diverse and hierarchically organized stromal compartment in the normal mammary gland that provides a framework to better understand fibroblasts in normal and cancerous states.\",\"PeriodicalId\":501009,\"journal\":{\"name\":\"The EMBO Journal\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EMBO Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00422-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-025-00422-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fibroblast hierarchy dynamics during mammary gland morphogenesis and tumorigenesis.
Fibroblasts form a major component of the stroma in normal mammary tissue and breast tumors. Here, we have applied longitudinal single-cell transcriptome profiling of >45,000 fibroblasts in the mouse mammary gland across five different developmental stages and during oncogenesis. In the normal gland, diverse stromal populations were resolved, including lobular-like fibroblasts, committed preadipocytes and adipogenesis-regulatory, as well as cycling fibroblasts in puberty and pregnancy. These specialized cell types appear to emerge from CD34high mesenchymal progenitor cells, accompanied by elevated Hedgehog signaling. During late tumorigenesis, heterogeneous cancer-associated fibroblasts (CAFs) were identified in mouse models of breast cancer, including a population of CD34- myofibroblastic CAFs (myCAFs) that were transcriptionally and phenotypically similar to senescent CAFs. Moreover, Wnt9a was demonstrated to be a regulator of senescence in CD34- myCAFs. These findings reflect a diverse and hierarchically organized stromal compartment in the normal mammary gland that provides a framework to better understand fibroblasts in normal and cancerous states.