Claire B. Rubbelke, Tripti Bhattacharya, Alexander Farnsworth, Paul Valdes, Erin L. McClymont, Heather Ford
{"title":"中更新世过渡期间南半球亚热带锋对南部非洲水文气候的影响","authors":"Claire B. Rubbelke, Tripti Bhattacharya, Alexander Farnsworth, Paul Valdes, Erin L. McClymont, Heather Ford","doi":"10.1038/s41467-025-58792-5","DOIUrl":null,"url":null,"abstract":"<p>Southern African (SA) hydroclimate is largely shaped by the interactions of atmospheric circulations, e.g., Hadley Circulation, and oceanic elements, like the Benguela Upwelling System (BUS), Agulhas System, and Antarctic Circumpolar frontal system. Large-scale changes to the Meridional Temperature Gradient (MTG) influence both the atmospheric and oceanic components of the hydroclimate system, and thus impact hydroclimate over SA. We present a leaf wax hydroclimate record from ODP 1084, in the BUS, which reveals that changes in the isotopic signature of precipitation over SA coincide with a strengthening of the MTG across the Mid-Pleistocene Transition (MPT). We use HadCM3 simulations to demonstrate the sensitivity of winter rainfall to shifts in the MTG during the MPT. Given the ongoing impacts of climate change on water resources in SA, awareness of the relationship between rainfall and shifts in Hadley Circulation could provide insight into past water availability and aid regional adaptation efforts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Southern Hemisphere subtropical front impacts on Southern African hydroclimate across the Mid-Pleistocene Transition\",\"authors\":\"Claire B. Rubbelke, Tripti Bhattacharya, Alexander Farnsworth, Paul Valdes, Erin L. McClymont, Heather Ford\",\"doi\":\"10.1038/s41467-025-58792-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Southern African (SA) hydroclimate is largely shaped by the interactions of atmospheric circulations, e.g., Hadley Circulation, and oceanic elements, like the Benguela Upwelling System (BUS), Agulhas System, and Antarctic Circumpolar frontal system. Large-scale changes to the Meridional Temperature Gradient (MTG) influence both the atmospheric and oceanic components of the hydroclimate system, and thus impact hydroclimate over SA. We present a leaf wax hydroclimate record from ODP 1084, in the BUS, which reveals that changes in the isotopic signature of precipitation over SA coincide with a strengthening of the MTG across the Mid-Pleistocene Transition (MPT). We use HadCM3 simulations to demonstrate the sensitivity of winter rainfall to shifts in the MTG during the MPT. Given the ongoing impacts of climate change on water resources in SA, awareness of the relationship between rainfall and shifts in Hadley Circulation could provide insight into past water availability and aid regional adaptation efforts.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58792-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58792-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Southern Hemisphere subtropical front impacts on Southern African hydroclimate across the Mid-Pleistocene Transition
Southern African (SA) hydroclimate is largely shaped by the interactions of atmospheric circulations, e.g., Hadley Circulation, and oceanic elements, like the Benguela Upwelling System (BUS), Agulhas System, and Antarctic Circumpolar frontal system. Large-scale changes to the Meridional Temperature Gradient (MTG) influence both the atmospheric and oceanic components of the hydroclimate system, and thus impact hydroclimate over SA. We present a leaf wax hydroclimate record from ODP 1084, in the BUS, which reveals that changes in the isotopic signature of precipitation over SA coincide with a strengthening of the MTG across the Mid-Pleistocene Transition (MPT). We use HadCM3 simulations to demonstrate the sensitivity of winter rainfall to shifts in the MTG during the MPT. Given the ongoing impacts of climate change on water resources in SA, awareness of the relationship between rainfall and shifts in Hadley Circulation could provide insight into past water availability and aid regional adaptation efforts.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.