Harikrishnan Venugopalan Nair Radhamoni, Jason Vleminckx, María Natalia Umaña, Simon Queenborough, Liza Sheera Comita, Hebbalalu Satyanarayana Suresh, Handanakere Shivaramaiah Dattaraja, Subramanya Shravan Kumar, Raman Sukumar
{"title":"热带降雨梯度下草本与木本植物群落的β多样性","authors":"Harikrishnan Venugopalan Nair Radhamoni, Jason Vleminckx, María Natalia Umaña, Simon Queenborough, Liza Sheera Comita, Hebbalalu Satyanarayana Suresh, Handanakere Shivaramaiah Dattaraja, Subramanya Shravan Kumar, Raman Sukumar","doi":"10.1111/jvs.70034","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Most of our current knowledge on tropical forest plant communities is based on trees, despite the substantial contribution of other lifeforms to plant diversity in these systems. In particular, there is a limited number of studies on understory herbaceous plants (herbs) in tropical forests. With their lower dispersal abilities, higher rates of evolution, and lower drought tolerance than trees, herbs are expected to exhibit different patterns of species composition across space. To compare the patterns and drivers of variation in species composition (β-diversity) between these two plant groups, we surveyed tree and herb communities in 13 one-ha plots along a rainfall gradient in a seasonally dry forest in India.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Mudumalai National Park, India.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In each one-ha plot, we censused all trees ≥ 1 cm DBH in each one-ha plot, and herbs in 47–50 1 × 1 m subplots within each one-ha plot. In both groups, we estimated among-plot β-diversity, which we decomposed into two components: turnover and nestedness. Then we partitioned the relative influences of spatial and environmental predictors, including rainfall, temperature, soil, and fire frequency, on β-diversity.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Contrary to our expectations, β-diversity was remarkably similar for herbs and trees, and both groups exhibited high turnover along the gradient. Rainfall and temperature explained most variation in composition within both groups, while fire and soil explained less variation, and their effects differed between groups.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>While trees and herbs show contrasting patterns of α-diversity across the same rainfall gradient, our study suggests that both life forms are impacted strongly by environmental filtering, predominantly rainfall and temperature, resulting in similar patterns of β-diversity. The high turnover observed in tree and herb communities, and the influence of rainfall and temperature in structuring these communities, should be considered when designing conservation and restoration strategies in the face of ongoing global change and other anthropogenic pressures on tropical forests.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beta-Diversity of Herbaceous Versus Woody Plant Communities Across a Tropical Rainfall Gradient\",\"authors\":\"Harikrishnan Venugopalan Nair Radhamoni, Jason Vleminckx, María Natalia Umaña, Simon Queenborough, Liza Sheera Comita, Hebbalalu Satyanarayana Suresh, Handanakere Shivaramaiah Dattaraja, Subramanya Shravan Kumar, Raman Sukumar\",\"doi\":\"10.1111/jvs.70034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Most of our current knowledge on tropical forest plant communities is based on trees, despite the substantial contribution of other lifeforms to plant diversity in these systems. In particular, there is a limited number of studies on understory herbaceous plants (herbs) in tropical forests. With their lower dispersal abilities, higher rates of evolution, and lower drought tolerance than trees, herbs are expected to exhibit different patterns of species composition across space. To compare the patterns and drivers of variation in species composition (β-diversity) between these two plant groups, we surveyed tree and herb communities in 13 one-ha plots along a rainfall gradient in a seasonally dry forest in India.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Mudumalai National Park, India.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In each one-ha plot, we censused all trees ≥ 1 cm DBH in each one-ha plot, and herbs in 47–50 1 × 1 m subplots within each one-ha plot. In both groups, we estimated among-plot β-diversity, which we decomposed into two components: turnover and nestedness. Then we partitioned the relative influences of spatial and environmental predictors, including rainfall, temperature, soil, and fire frequency, on β-diversity.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Contrary to our expectations, β-diversity was remarkably similar for herbs and trees, and both groups exhibited high turnover along the gradient. Rainfall and temperature explained most variation in composition within both groups, while fire and soil explained less variation, and their effects differed between groups.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>While trees and herbs show contrasting patterns of α-diversity across the same rainfall gradient, our study suggests that both life forms are impacted strongly by environmental filtering, predominantly rainfall and temperature, resulting in similar patterns of β-diversity. The high turnover observed in tree and herb communities, and the influence of rainfall and temperature in structuring these communities, should be considered when designing conservation and restoration strategies in the face of ongoing global change and other anthropogenic pressures on tropical forests.</p>\\n </section>\\n </div>\",\"PeriodicalId\":49965,\"journal\":{\"name\":\"Journal of Vegetation Science\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vegetation Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jvs.70034\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.70034","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Beta-Diversity of Herbaceous Versus Woody Plant Communities Across a Tropical Rainfall Gradient
Aim
Most of our current knowledge on tropical forest plant communities is based on trees, despite the substantial contribution of other lifeforms to plant diversity in these systems. In particular, there is a limited number of studies on understory herbaceous plants (herbs) in tropical forests. With their lower dispersal abilities, higher rates of evolution, and lower drought tolerance than trees, herbs are expected to exhibit different patterns of species composition across space. To compare the patterns and drivers of variation in species composition (β-diversity) between these two plant groups, we surveyed tree and herb communities in 13 one-ha plots along a rainfall gradient in a seasonally dry forest in India.
Location
Mudumalai National Park, India.
Methods
In each one-ha plot, we censused all trees ≥ 1 cm DBH in each one-ha plot, and herbs in 47–50 1 × 1 m subplots within each one-ha plot. In both groups, we estimated among-plot β-diversity, which we decomposed into two components: turnover and nestedness. Then we partitioned the relative influences of spatial and environmental predictors, including rainfall, temperature, soil, and fire frequency, on β-diversity.
Results
Contrary to our expectations, β-diversity was remarkably similar for herbs and trees, and both groups exhibited high turnover along the gradient. Rainfall and temperature explained most variation in composition within both groups, while fire and soil explained less variation, and their effects differed between groups.
Conclusions
While trees and herbs show contrasting patterns of α-diversity across the same rainfall gradient, our study suggests that both life forms are impacted strongly by environmental filtering, predominantly rainfall and temperature, resulting in similar patterns of β-diversity. The high turnover observed in tree and herb communities, and the influence of rainfall and temperature in structuring these communities, should be considered when designing conservation and restoration strategies in the face of ongoing global change and other anthropogenic pressures on tropical forests.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.