亚北极流域微地形和灌木分布对雪深的影响:对雪空间变异性的预测理解

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, Baptiste Dafflon
{"title":"亚北极流域微地形和灌木分布对雪深的影响:对雪空间变异性的预测理解","authors":"Ian Shirley,&nbsp;Sebastian Uhlemann,&nbsp;John Peterson,&nbsp;Katrina Bennett,&nbsp;Susan S. Hubbard,&nbsp;Baptiste Dafflon","doi":"10.1029/2024JG008604","DOIUrl":null,"url":null,"abstract":"<p>Snow plays a critical role in carbon cycling, vegetation dynamics, and permafrost hydrology at high latitudes by influencing surface energy exchange. Predicting snow distribution patterns is essential for understanding the evolution of Arctic ecosystems, yet scaling process-level knowledge to landscape predictions remains challenging. Here, we analyze snow depth (2019 and 2022), terrain elevation, and vegetation height from a watershed on the Seward Peninsula, Alaska, to examine how topography and shrubs shape snow redistribution across spatial scales. We find that snow depth is strongly coupled to terrain at scales below ∼60 m but becomes increasingly decoupled at larger scales. The topographic model of snow depth variation, which transforms terrain data to align with these scale-dependent snow patterns, is well correlated with local snow depth variations (linear fit <i>R</i><sup>2</sup> &gt; 0.5 for 85% of 100-m patches). A machine learning reconstruction of shrub canopy snow trapping reveals a simple exponential relationship between canopy structure and snow accumulation (<i>R</i><sup>2</sup> = 0.59), highlighting the combined influence of topography and vegetation on snow distribution. Together, these empirical relationships capture much of the observed snow variability in the watershed (<i>R</i><sup>2</sup> = 0.49, root mean square error (RMSE) = 30 cm), though systematic limitations persist in areas of strong scour and at coarser scales where wind-terrain interactions are more complex. These findings provide a framework for more efficient snow depth prediction and offer insights to improve snow-vegetation feedback representation in Earth System Models.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008604","citationCount":"0","resultStr":"{\"title\":\"Disentangling the Impacts of Microtopography and Shrub Distribution on Snow Depth in a Subarctic Watershed: Toward a Predictive Understanding of Snow Spatial Variability\",\"authors\":\"Ian Shirley,&nbsp;Sebastian Uhlemann,&nbsp;John Peterson,&nbsp;Katrina Bennett,&nbsp;Susan S. Hubbard,&nbsp;Baptiste Dafflon\",\"doi\":\"10.1029/2024JG008604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Snow plays a critical role in carbon cycling, vegetation dynamics, and permafrost hydrology at high latitudes by influencing surface energy exchange. Predicting snow distribution patterns is essential for understanding the evolution of Arctic ecosystems, yet scaling process-level knowledge to landscape predictions remains challenging. Here, we analyze snow depth (2019 and 2022), terrain elevation, and vegetation height from a watershed on the Seward Peninsula, Alaska, to examine how topography and shrubs shape snow redistribution across spatial scales. We find that snow depth is strongly coupled to terrain at scales below ∼60 m but becomes increasingly decoupled at larger scales. The topographic model of snow depth variation, which transforms terrain data to align with these scale-dependent snow patterns, is well correlated with local snow depth variations (linear fit <i>R</i><sup>2</sup> &gt; 0.5 for 85% of 100-m patches). A machine learning reconstruction of shrub canopy snow trapping reveals a simple exponential relationship between canopy structure and snow accumulation (<i>R</i><sup>2</sup> = 0.59), highlighting the combined influence of topography and vegetation on snow distribution. Together, these empirical relationships capture much of the observed snow variability in the watershed (<i>R</i><sup>2</sup> = 0.49, root mean square error (RMSE) = 30 cm), though systematic limitations persist in areas of strong scour and at coarser scales where wind-terrain interactions are more complex. These findings provide a framework for more efficient snow depth prediction and offer insights to improve snow-vegetation feedback representation in Earth System Models.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008604\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008604\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008604","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

积雪通过影响地表能量交换,在高纬度地区的碳循环、植被动态和多年冻土水文中起着关键作用。预测降雪分布模式对于了解北极生态系统的演变至关重要,但将过程级知识扩展到景观预测仍然具有挑战性。在这里,我们分析了阿拉斯加苏厄德半岛流域的雪深(2019年和2022年)、地形高程和植被高度,以研究地形和灌木如何在空间尺度上影响雪的再分布。我们发现雪深在小于~ 60 m的尺度上与地形强烈耦合,但在更大的尺度上变得越来越不耦合。雪深变化的地形模型将地形数据转换为与这些尺度相关的雪模式相一致,与局部雪深变化具有良好的相关性(线性拟合R2 >;85%的100米斑块为0.5)。灌木冠层积雪的机器学习重建揭示了冠层结构与积雪积累之间的简单指数关系(R2 = 0.59),突出了地形和植被对积雪分布的综合影响。总的来说,这些经验关系捕获了流域中观测到的大部分积雪变化(R2 = 0.49,均方根误差(RMSE) = 30 cm),尽管在强冲刷地区和风地相互作用更复杂的较粗尺度上,系统局限性仍然存在。这些发现为更有效的雪深预测提供了框架,并为改善地球系统模型中的雪-植被反馈表示提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Disentangling the Impacts of Microtopography and Shrub Distribution on Snow Depth in a Subarctic Watershed: Toward a Predictive Understanding of Snow Spatial Variability

Disentangling the Impacts of Microtopography and Shrub Distribution on Snow Depth in a Subarctic Watershed: Toward a Predictive Understanding of Snow Spatial Variability

Snow plays a critical role in carbon cycling, vegetation dynamics, and permafrost hydrology at high latitudes by influencing surface energy exchange. Predicting snow distribution patterns is essential for understanding the evolution of Arctic ecosystems, yet scaling process-level knowledge to landscape predictions remains challenging. Here, we analyze snow depth (2019 and 2022), terrain elevation, and vegetation height from a watershed on the Seward Peninsula, Alaska, to examine how topography and shrubs shape snow redistribution across spatial scales. We find that snow depth is strongly coupled to terrain at scales below ∼60 m but becomes increasingly decoupled at larger scales. The topographic model of snow depth variation, which transforms terrain data to align with these scale-dependent snow patterns, is well correlated with local snow depth variations (linear fit R2 > 0.5 for 85% of 100-m patches). A machine learning reconstruction of shrub canopy snow trapping reveals a simple exponential relationship between canopy structure and snow accumulation (R2 = 0.59), highlighting the combined influence of topography and vegetation on snow distribution. Together, these empirical relationships capture much of the observed snow variability in the watershed (R2 = 0.49, root mean square error (RMSE) = 30 cm), though systematic limitations persist in areas of strong scour and at coarser scales where wind-terrain interactions are more complex. These findings provide a framework for more efficient snow depth prediction and offer insights to improve snow-vegetation feedback representation in Earth System Models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信