面向全方位风能收集的摩擦纳米发电机结构设计策略

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY
Jingu Jeong, Eunhwan Jo, Jong-An Choi, Yunsung Kang, Soonjae Pyo
{"title":"面向全方位风能收集的摩擦纳米发电机结构设计策略","authors":"Jingu Jeong,&nbsp;Eunhwan Jo,&nbsp;Jong-An Choi,&nbsp;Yunsung Kang,&nbsp;Soonjae Pyo","doi":"10.1186/s40486-025-00224-6","DOIUrl":null,"url":null,"abstract":"<div><p>Omnidirectional wind energy harvesting has gained increasing attention as a means of harnessing the inherently variable and multidirectional flows encountered in real-world environments. Triboelectric nanogenerators (TENGs), which leverage contact electrification and electrostatic induction to convert mechanical motion into electrical power, are particularly well-suited for such applications due to their ability to operate effectively under low-speed and intermittent wind conditions. In this review, we first outline the fundamental triboelectric processes and operating modes that underpin TENG functionality, emphasizing how their low inertia and high-voltage outputs make them compatible with a wide range of wind profiles. We then discuss three predominant device classifications—rotary, aeroelastic, and rolling-based—highlighting their distinct mechanical configurations and capacities for omnidirectional capture. Key examples illustrate how strategically designed rotor geometries, flutter-driven films, and rolling elements can maximize contact–separation events and enhance triboelectric generation under complex airflow patterns. Finally, we examine the major obstacles faced by TENG-based harvesters, including durability, hybrid system design, and intelligent power management. Strategies to overcome these barriers involve wear-resistant materials, adaptive architectures, and advanced circuitry, offering TENG solutions that are feasible in micro- or off-grid scenarios.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"13 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-025-00224-6","citationCount":"0","resultStr":"{\"title\":\"Structural design strategies of triboelectric nanogenerators for omnidirectional wind energy harvesting\",\"authors\":\"Jingu Jeong,&nbsp;Eunhwan Jo,&nbsp;Jong-An Choi,&nbsp;Yunsung Kang,&nbsp;Soonjae Pyo\",\"doi\":\"10.1186/s40486-025-00224-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Omnidirectional wind energy harvesting has gained increasing attention as a means of harnessing the inherently variable and multidirectional flows encountered in real-world environments. Triboelectric nanogenerators (TENGs), which leverage contact electrification and electrostatic induction to convert mechanical motion into electrical power, are particularly well-suited for such applications due to their ability to operate effectively under low-speed and intermittent wind conditions. In this review, we first outline the fundamental triboelectric processes and operating modes that underpin TENG functionality, emphasizing how their low inertia and high-voltage outputs make them compatible with a wide range of wind profiles. We then discuss three predominant device classifications—rotary, aeroelastic, and rolling-based—highlighting their distinct mechanical configurations and capacities for omnidirectional capture. Key examples illustrate how strategically designed rotor geometries, flutter-driven films, and rolling elements can maximize contact–separation events and enhance triboelectric generation under complex airflow patterns. Finally, we examine the major obstacles faced by TENG-based harvesters, including durability, hybrid system design, and intelligent power management. Strategies to overcome these barriers involve wear-resistant materials, adaptive architectures, and advanced circuitry, offering TENG solutions that are feasible in micro- or off-grid scenarios.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-025-00224-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-025-00224-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-025-00224-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全方位风能收集作为一种利用现实环境中遇到的内在可变和多向流动的手段,越来越受到关注。摩擦电纳米发电机(TENGs)利用接触通电和静电感应将机械运动转化为电能,特别适合于这种应用,因为它们能够在低速和间歇性风力条件下有效运行。在这篇综述中,我们首先概述了支撑TENG功能的基本摩擦电过程和工作模式,强调了它们的低惯性和高电压输出如何使它们与广泛的风廓线兼容。然后,我们讨论了三种主要的设备分类-旋转,气动弹性和滚动-强调了它们独特的机械结构和全方位捕获的能力。关键的例子说明了战略性设计的转子几何形状,颤振驱动薄膜和滚动元件如何最大化接触分离事件并增强复杂气流模式下的摩擦发电。最后,我们研究了基于teng的收割机面临的主要障碍,包括耐久性、混合动力系统设计和智能电源管理。克服这些障碍的策略包括耐磨材料、自适应架构和先进的电路,提供在微型或离网情况下可行的TENG解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural design strategies of triboelectric nanogenerators for omnidirectional wind energy harvesting

Omnidirectional wind energy harvesting has gained increasing attention as a means of harnessing the inherently variable and multidirectional flows encountered in real-world environments. Triboelectric nanogenerators (TENGs), which leverage contact electrification and electrostatic induction to convert mechanical motion into electrical power, are particularly well-suited for such applications due to their ability to operate effectively under low-speed and intermittent wind conditions. In this review, we first outline the fundamental triboelectric processes and operating modes that underpin TENG functionality, emphasizing how their low inertia and high-voltage outputs make them compatible with a wide range of wind profiles. We then discuss three predominant device classifications—rotary, aeroelastic, and rolling-based—highlighting their distinct mechanical configurations and capacities for omnidirectional capture. Key examples illustrate how strategically designed rotor geometries, flutter-driven films, and rolling elements can maximize contact–separation events and enhance triboelectric generation under complex airflow patterns. Finally, we examine the major obstacles faced by TENG-based harvesters, including durability, hybrid system design, and intelligent power management. Strategies to overcome these barriers involve wear-resistant materials, adaptive architectures, and advanced circuitry, offering TENG solutions that are feasible in micro- or off-grid scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信