Nicole Cindy Fontinele Miranda , Ivan Onone Gialain , Marlene Kasumi Gantier-Takano , Rafael Yagüe Ballester , Bruno Agostinho Hernandez , Alex Fok , Josete Barbosa Cruz Meira
{"title":"CAD/CAM整体磨牙冠的载荷-断裂试验是否应该标准化?如何标准化?系统回顾和有限元分析","authors":"Nicole Cindy Fontinele Miranda , Ivan Onone Gialain , Marlene Kasumi Gantier-Takano , Rafael Yagüe Ballester , Bruno Agostinho Hernandez , Alex Fok , Josete Barbosa Cruz Meira","doi":"10.1016/j.jmbbm.2025.106984","DOIUrl":null,"url":null,"abstract":"<div><div>The load-to-fracture test is widely used to evaluate crowns made of new CAD/CAM materials, even though its validity in predicting clinical performances is often questioned. Despite its limitations, the test is useful in assessing the load-bearing capacity of crowns subjected to accidental overloads and setting up step-stress regimes for fatigue testing. This study combined a systematic review (SR) and finite element analysis (FEA) to assess whether the test should be standardized and how.</div><div>The SR evaluated load-to-fracture studies of monolithic CAD/CAM molar crowns published in Q1 and Q2 journals. Findings from 85 studies highlighted the lack of standardization in test methods, particularly regarding loading head type and die material. This variability led to a wide dispersion of fracture load results, limiting the utility of the load-to-fracture test.</div><div>The FEA evaluated the influence of loading head type and die material on tensile stress distribution in lithium disilicate (LD) and polymer-infiltrated ceramic network (PICN) crowns. Eight in vitro conditions were simulated, varying the loading head (4 mm and 10 mm spheres, inverse V-shaped device, opposing teeth) and die material (stiff, E = 207 GPa; non-stiff, E = 13 GPa). The FEA confirmed that the stress distribution and peak tensile stress in LD and PICN crowns depend significantly on these factors as well as the crown material properties, with the peak stress variation from LD to PICN ranging from −4 % to 237 %. Using larger-diameter spheres with a die material approximating dentin in stiffness resulted in stress distributions more representative of clinical conditions.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"168 ","pages":"Article 106984"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Should the load-to-fracture test for CAD/CAM monolithic molar crowns be standardized and how? A systematic review and finite element analysis\",\"authors\":\"Nicole Cindy Fontinele Miranda , Ivan Onone Gialain , Marlene Kasumi Gantier-Takano , Rafael Yagüe Ballester , Bruno Agostinho Hernandez , Alex Fok , Josete Barbosa Cruz Meira\",\"doi\":\"10.1016/j.jmbbm.2025.106984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The load-to-fracture test is widely used to evaluate crowns made of new CAD/CAM materials, even though its validity in predicting clinical performances is often questioned. Despite its limitations, the test is useful in assessing the load-bearing capacity of crowns subjected to accidental overloads and setting up step-stress regimes for fatigue testing. This study combined a systematic review (SR) and finite element analysis (FEA) to assess whether the test should be standardized and how.</div><div>The SR evaluated load-to-fracture studies of monolithic CAD/CAM molar crowns published in Q1 and Q2 journals. Findings from 85 studies highlighted the lack of standardization in test methods, particularly regarding loading head type and die material. This variability led to a wide dispersion of fracture load results, limiting the utility of the load-to-fracture test.</div><div>The FEA evaluated the influence of loading head type and die material on tensile stress distribution in lithium disilicate (LD) and polymer-infiltrated ceramic network (PICN) crowns. Eight in vitro conditions were simulated, varying the loading head (4 mm and 10 mm spheres, inverse V-shaped device, opposing teeth) and die material (stiff, E = 207 GPa; non-stiff, E = 13 GPa). The FEA confirmed that the stress distribution and peak tensile stress in LD and PICN crowns depend significantly on these factors as well as the crown material properties, with the peak stress variation from LD to PICN ranging from −4 % to 237 %. Using larger-diameter spheres with a die material approximating dentin in stiffness resulted in stress distributions more representative of clinical conditions.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"168 \",\"pages\":\"Article 106984\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616125001006\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125001006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Should the load-to-fracture test for CAD/CAM monolithic molar crowns be standardized and how? A systematic review and finite element analysis
The load-to-fracture test is widely used to evaluate crowns made of new CAD/CAM materials, even though its validity in predicting clinical performances is often questioned. Despite its limitations, the test is useful in assessing the load-bearing capacity of crowns subjected to accidental overloads and setting up step-stress regimes for fatigue testing. This study combined a systematic review (SR) and finite element analysis (FEA) to assess whether the test should be standardized and how.
The SR evaluated load-to-fracture studies of monolithic CAD/CAM molar crowns published in Q1 and Q2 journals. Findings from 85 studies highlighted the lack of standardization in test methods, particularly regarding loading head type and die material. This variability led to a wide dispersion of fracture load results, limiting the utility of the load-to-fracture test.
The FEA evaluated the influence of loading head type and die material on tensile stress distribution in lithium disilicate (LD) and polymer-infiltrated ceramic network (PICN) crowns. Eight in vitro conditions were simulated, varying the loading head (4 mm and 10 mm spheres, inverse V-shaped device, opposing teeth) and die material (stiff, E = 207 GPa; non-stiff, E = 13 GPa). The FEA confirmed that the stress distribution and peak tensile stress in LD and PICN crowns depend significantly on these factors as well as the crown material properties, with the peak stress variation from LD to PICN ranging from −4 % to 237 %. Using larger-diameter spheres with a die material approximating dentin in stiffness resulted in stress distributions more representative of clinical conditions.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.