{"title":"图中特殊最大匹配的三个近似结果","authors":"Vahan Mkrtchyan","doi":"10.1016/j.dam.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi></math></span> define the parameters <span><math><mrow><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> as the minimum and maximum value of <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>∖</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>F</mi></math></span> is a maximum matching of <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the matching number of <span><math><mi>G</mi></math></span>. In this paper, we show that there is a small constant <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span>, such that the following decision problem is NP-complete: given a graph <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>k</mi><mo>≤</mo><mfrac><mrow><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, check whether there is a maximum matching <span><math><mi>F</mi></math></span> in <span><math><mi>G</mi></math></span>, such that <span><math><mrow><mrow><mo>|</mo><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>∖</mo><mi>F</mi><mo>)</mo></mrow><mo>−</mo><mi>k</mi><mo>|</mo></mrow><mo>≤</mo><mi>c</mi><mi>⋅</mi><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mrow></math></span>. Note that when <span><math><mrow><mi>c</mi><mo>=</mo><mn>1</mn></mrow></math></span>, this problem is polynomial time solvable as we observe in the paper. Since in any graph <span><math><mi>G</mi></math></span>, we have <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, any polynomial time algorithm constructing a maximum matching of a graph is a 2-approximation algorithm for <span><math><mrow><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We complement these observations by presenting two inapproximability results for <span><math><mrow><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 127-136"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three results towards approximation of special maximum matchings in graphs\",\"authors\":\"Vahan Mkrtchyan\",\"doi\":\"10.1016/j.dam.2025.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a graph <span><math><mi>G</mi></math></span> define the parameters <span><math><mrow><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> as the minimum and maximum value of <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>∖</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>F</mi></math></span> is a maximum matching of <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the matching number of <span><math><mi>G</mi></math></span>. In this paper, we show that there is a small constant <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span>, such that the following decision problem is NP-complete: given a graph <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>k</mi><mo>≤</mo><mfrac><mrow><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, check whether there is a maximum matching <span><math><mi>F</mi></math></span> in <span><math><mi>G</mi></math></span>, such that <span><math><mrow><mrow><mo>|</mo><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>∖</mo><mi>F</mi><mo>)</mo></mrow><mo>−</mo><mi>k</mi><mo>|</mo></mrow><mo>≤</mo><mi>c</mi><mi>⋅</mi><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mrow></math></span>. Note that when <span><math><mrow><mi>c</mi><mo>=</mo><mn>1</mn></mrow></math></span>, this problem is polynomial time solvable as we observe in the paper. Since in any graph <span><math><mi>G</mi></math></span>, we have <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, any polynomial time algorithm constructing a maximum matching of a graph is a 2-approximation algorithm for <span><math><mrow><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We complement these observations by presenting two inapproximability results for <span><math><mrow><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"371 \",\"pages\":\"Pages 127-136\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001751\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001751","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
对于图 G,将参数 ℓ(G) 和 L(G) 定义为 ν(G∖F) 的最小值和最大值,其中 F 是图 G 的最大匹配,ν(G) 是图 G 的匹配数。在本文中,我们证明了存在一个小常数 c>0,使得下面的决策问题是 NP-完全的:给定一个图 G 和 k≤|V|2,检查 G 中是否存在最大匹配度 F,使得|ν(G∖F)-k|≤c⋅|V|。请注意,当 c=1 时,正如我们在论文中所观察到的,这个问题是多项式时间可解的。由于在任何图 G 中,我们都有 L(G)≤2ℓ(G),因此任何构造图最大匹配的多项式时间算法都是ℓ(G) 的 2 近似算法和 L(G) 的 12 近似算法。我们提出了 ℓ(G) 和 L(G) 的两个不可逼近性结果,以补充这些观察结果。
Three results towards approximation of special maximum matchings in graphs
For a graph define the parameters and as the minimum and maximum value of , where is a maximum matching of and is the matching number of . In this paper, we show that there is a small constant , such that the following decision problem is NP-complete: given a graph and , check whether there is a maximum matching in , such that . Note that when , this problem is polynomial time solvable as we observe in the paper. Since in any graph , we have , any polynomial time algorithm constructing a maximum matching of a graph is a 2-approximation algorithm for and -approximation algorithm for . We complement these observations by presenting two inapproximability results for and .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.