Bateer Baiyin , Yue Xiang , Yang Shao , Jung Eek Son , Kotaro Tagawa , Satoshi Yamada , Mina Yamada , Qichang Yang
{"title":"营养流环境如何促进水培莴苣生长","authors":"Bateer Baiyin , Yue Xiang , Yang Shao , Jung Eek Son , Kotaro Tagawa , Satoshi Yamada , Mina Yamada , Qichang Yang","doi":"10.1016/j.envexpbot.2025.106137","DOIUrl":null,"url":null,"abstract":"<div><div>Hydroponics is a plant growth system that uses liquid nutrient medium, but the effects of nutrient solution flow on root development are unexplored. Here, the comprehensive effects of nutrient flow on root morphology, antioxidant properties, and multi-omics characteristics of hydroponic lettuce were analyzed via root morphology, cell wall composition, oxidative stress indicators, and nutrient uptake at different nutrient flow and growth stages measurement. Under flow conditions, root length, surface area, and volume increased significantly, indicating that flow promoted root expansion and improved nutrient uptake. Cell wall components also increased, suggesting that flow may support root growth by strengthening the cell wall structure. Although oxidative damage indicators increased, the roots also exhibited high antioxidant enzyme activity, enhancing their response to oxidative stress induced by the flowing environment. Metabolomic analysis showed that flow activated cell division- and signal transduction-related pathways. Transcriptomics and proteomics showed the upregulation or downregulation of multiple genes and proteins related to root development and stress resistance, with significant enrichment in the lignin synthesis pathway. Nutrient solution flow, thus, promotes lettuce root growth and stress resistance through multilevel regulation, providing a theoretical basis for enhancing hydroponic crop growth environments, increasing yields, and improving vegetable crop quality.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"233 ","pages":"Article 106137"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How the nutrient flow environment promotes lettuce growth in hydroponics\",\"authors\":\"Bateer Baiyin , Yue Xiang , Yang Shao , Jung Eek Son , Kotaro Tagawa , Satoshi Yamada , Mina Yamada , Qichang Yang\",\"doi\":\"10.1016/j.envexpbot.2025.106137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydroponics is a plant growth system that uses liquid nutrient medium, but the effects of nutrient solution flow on root development are unexplored. Here, the comprehensive effects of nutrient flow on root morphology, antioxidant properties, and multi-omics characteristics of hydroponic lettuce were analyzed via root morphology, cell wall composition, oxidative stress indicators, and nutrient uptake at different nutrient flow and growth stages measurement. Under flow conditions, root length, surface area, and volume increased significantly, indicating that flow promoted root expansion and improved nutrient uptake. Cell wall components also increased, suggesting that flow may support root growth by strengthening the cell wall structure. Although oxidative damage indicators increased, the roots also exhibited high antioxidant enzyme activity, enhancing their response to oxidative stress induced by the flowing environment. Metabolomic analysis showed that flow activated cell division- and signal transduction-related pathways. Transcriptomics and proteomics showed the upregulation or downregulation of multiple genes and proteins related to root development and stress resistance, with significant enrichment in the lignin synthesis pathway. Nutrient solution flow, thus, promotes lettuce root growth and stress resistance through multilevel regulation, providing a theoretical basis for enhancing hydroponic crop growth environments, increasing yields, and improving vegetable crop quality.</div></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":\"233 \",\"pages\":\"Article 106137\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847225000541\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847225000541","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
How the nutrient flow environment promotes lettuce growth in hydroponics
Hydroponics is a plant growth system that uses liquid nutrient medium, but the effects of nutrient solution flow on root development are unexplored. Here, the comprehensive effects of nutrient flow on root morphology, antioxidant properties, and multi-omics characteristics of hydroponic lettuce were analyzed via root morphology, cell wall composition, oxidative stress indicators, and nutrient uptake at different nutrient flow and growth stages measurement. Under flow conditions, root length, surface area, and volume increased significantly, indicating that flow promoted root expansion and improved nutrient uptake. Cell wall components also increased, suggesting that flow may support root growth by strengthening the cell wall structure. Although oxidative damage indicators increased, the roots also exhibited high antioxidant enzyme activity, enhancing their response to oxidative stress induced by the flowing environment. Metabolomic analysis showed that flow activated cell division- and signal transduction-related pathways. Transcriptomics and proteomics showed the upregulation or downregulation of multiple genes and proteins related to root development and stress resistance, with significant enrichment in the lignin synthesis pathway. Nutrient solution flow, thus, promotes lettuce root growth and stress resistance through multilevel regulation, providing a theoretical basis for enhancing hydroponic crop growth environments, increasing yields, and improving vegetable crop quality.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.