Shubo Chen , Fangjun Wang , Shiyi Chen , Wenguo Xiang , Xiang Xu , Xiquan Li
{"title":"紧凑-快速双流化床1mw内气固流动特性的实验研究与数值模拟","authors":"Shubo Chen , Fangjun Wang , Shiyi Chen , Wenguo Xiang , Xiang Xu , Xiquan Li","doi":"10.1016/j.powtec.2025.121009","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the design and operational validation of a 1 MW<sub>th</sub> compact-fast dual fluidized bed system for calcium looping biomass gasification, scaled up from a lab-scale 10 kW<sub>th</sub> fluidized bed device. A series of cold-state gas-solid flow experiments were conducted to evaluate the hydrodynamic performance of the system. Results indicate stable pressure balance across various operating conditions, with U-type loop seals demonstrating effective pressure self-regulation. The distribution of bed materials in each reactor exhibited consistent and controllable variations in response to changes in loop seal aeration, highlighting the operational flexibility and stability of the loop seals in modulating solid circulation. The solid circulation flux was widely adjustable under different flow control strategies, ensuring compatibility with subsequent high-temperature biomass gasification tests. High-temperature gas-solid flow experiments further confirmed the system's stable operation under thermal conditions. Continuum Particle Fluid Dynamics (CPFD) simulations validated the hydrodynamic feasibility of the design. This work establishes a robust foundation for advancing biomass-to‑hydrogen production using compact-fast dual fluidized bed technology.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"459 ","pages":"Article 121009"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study and numerical simulation of gas-solid flow characteristics in 1MWth compact-fast dual fluidized bed\",\"authors\":\"Shubo Chen , Fangjun Wang , Shiyi Chen , Wenguo Xiang , Xiang Xu , Xiquan Li\",\"doi\":\"10.1016/j.powtec.2025.121009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents the design and operational validation of a 1 MW<sub>th</sub> compact-fast dual fluidized bed system for calcium looping biomass gasification, scaled up from a lab-scale 10 kW<sub>th</sub> fluidized bed device. A series of cold-state gas-solid flow experiments were conducted to evaluate the hydrodynamic performance of the system. Results indicate stable pressure balance across various operating conditions, with U-type loop seals demonstrating effective pressure self-regulation. The distribution of bed materials in each reactor exhibited consistent and controllable variations in response to changes in loop seal aeration, highlighting the operational flexibility and stability of the loop seals in modulating solid circulation. The solid circulation flux was widely adjustable under different flow control strategies, ensuring compatibility with subsequent high-temperature biomass gasification tests. High-temperature gas-solid flow experiments further confirmed the system's stable operation under thermal conditions. Continuum Particle Fluid Dynamics (CPFD) simulations validated the hydrodynamic feasibility of the design. This work establishes a robust foundation for advancing biomass-to‑hydrogen production using compact-fast dual fluidized bed technology.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"459 \",\"pages\":\"Article 121009\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591025004048\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025004048","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Experimental study and numerical simulation of gas-solid flow characteristics in 1MWth compact-fast dual fluidized bed
This study presents the design and operational validation of a 1 MWth compact-fast dual fluidized bed system for calcium looping biomass gasification, scaled up from a lab-scale 10 kWth fluidized bed device. A series of cold-state gas-solid flow experiments were conducted to evaluate the hydrodynamic performance of the system. Results indicate stable pressure balance across various operating conditions, with U-type loop seals demonstrating effective pressure self-regulation. The distribution of bed materials in each reactor exhibited consistent and controllable variations in response to changes in loop seal aeration, highlighting the operational flexibility and stability of the loop seals in modulating solid circulation. The solid circulation flux was widely adjustable under different flow control strategies, ensuring compatibility with subsequent high-temperature biomass gasification tests. High-temperature gas-solid flow experiments further confirmed the system's stable operation under thermal conditions. Continuum Particle Fluid Dynamics (CPFD) simulations validated the hydrodynamic feasibility of the design. This work establishes a robust foundation for advancing biomass-to‑hydrogen production using compact-fast dual fluidized bed technology.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.