基于电化学噪声和不同传递函数的人工神经网络对5-氨基四唑对AA6065-AZ31合金缓蚀效果的建模与预测

IF 1.3 4区 化学 Q4 ELECTROCHEMISTRY
J.M. Angeles , A. Parrales , Sung-Hyuk Cha , D.E. Millán-Ocampo , R. López-Sesenes , J.A. Hernández
{"title":"基于电化学噪声和不同传递函数的人工神经网络对5-氨基四唑对AA6065-AZ31合金缓蚀效果的建模与预测","authors":"J.M. Angeles ,&nbsp;A. Parrales ,&nbsp;Sung-Hyuk Cha ,&nbsp;D.E. Millán-Ocampo ,&nbsp;R. López-Sesenes ,&nbsp;J.A. Hernández","doi":"10.1016/j.ijoes.2025.101021","DOIUrl":null,"url":null,"abstract":"<div><div>Different configurations of artificial neural network (ANN) models were developed and evaluated to predict the corrosion inhibition efficiency of 5-Aminotetrazole on AA6065-AZ31 alloy exposed to saline conditions (0.1 M and 0.05 M NaCl) using electrochemical noise. The training dataset consisted of 302,400 measurements from immersion tests with inhibitor concentrations of 2 mM, 4 mM, 6 mM, 8 mM, and 10 mM. The variables time, inhibitor concentration, and electrolyte concentration were used as input variables, while the output variable was electrochemical resistance. A comprehensive analysis was performed using different transfer functions in the hidden layer, including TanSig, LogSig, ElliotSig, Radbas, Softmax, dSiLU, Sqsinc, ReLU, and SoftPlus, all trained with the Levenberg-Marquardt algorithm. Among these configurations, the model employing a 9-neuron hidden layer architecture and dSiLU as transfer function achieved the best performance. The determination coefficient (R²) of 0.9983 obtained by the best model demonstrated an excellent correlation between simulated and experimental data. The corrosion inhibition efficiency predicted by the best ANN model obtained less than 4 % error, confirming the ANN's potential for accurately modeling electrochemical noise.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 6","pages":"Article 101021"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and prediction of corrosion inhibition efficiency of 5-Aminotetrazole on AA6065-AZ31 alloy using electrochemical noise and artificial neural networks with different transfer functions\",\"authors\":\"J.M. Angeles ,&nbsp;A. Parrales ,&nbsp;Sung-Hyuk Cha ,&nbsp;D.E. Millán-Ocampo ,&nbsp;R. López-Sesenes ,&nbsp;J.A. Hernández\",\"doi\":\"10.1016/j.ijoes.2025.101021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Different configurations of artificial neural network (ANN) models were developed and evaluated to predict the corrosion inhibition efficiency of 5-Aminotetrazole on AA6065-AZ31 alloy exposed to saline conditions (0.1 M and 0.05 M NaCl) using electrochemical noise. The training dataset consisted of 302,400 measurements from immersion tests with inhibitor concentrations of 2 mM, 4 mM, 6 mM, 8 mM, and 10 mM. The variables time, inhibitor concentration, and electrolyte concentration were used as input variables, while the output variable was electrochemical resistance. A comprehensive analysis was performed using different transfer functions in the hidden layer, including TanSig, LogSig, ElliotSig, Radbas, Softmax, dSiLU, Sqsinc, ReLU, and SoftPlus, all trained with the Levenberg-Marquardt algorithm. Among these configurations, the model employing a 9-neuron hidden layer architecture and dSiLU as transfer function achieved the best performance. The determination coefficient (R²) of 0.9983 obtained by the best model demonstrated an excellent correlation between simulated and experimental data. The corrosion inhibition efficiency predicted by the best ANN model obtained less than 4 % error, confirming the ANN's potential for accurately modeling electrochemical noise.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":\"20 6\",\"pages\":\"Article 101021\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398125000963\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398125000963","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

建立并评价了不同配置的人工神经网络(ANN)模型,利用电化学噪声预测5-氨基四唑在盐水条件下(0.1 M和0.05 M NaCl)对AA6065-AZ31合金的缓蚀效果。训练数据集包括302,400个浸泡测试的测量值,抑制剂浓度为2 mM, 4 mM, 6 mM, 8 mM和10 mM。输入变量为时间、抑制剂浓度和电解质浓度,输出变量为电化学电阻。在隐层使用TanSig、LogSig、ElliotSig、Radbas、Softmax、dSiLU、Sqsinc、ReLU和SoftPlus等传递函数进行综合分析,这些传递函数均使用Levenberg-Marquardt算法进行训练。其中,采用9神经元隐层结构和dSiLU作为传递函数的模型性能最好。最佳模型的决定系数(R²)为0.9983,表明模拟数据与实验数据具有良好的相关性。最佳人工神经网络模型预测的缓蚀效率误差小于4 %,证实了人工神经网络在准确模拟电化学噪声方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and prediction of corrosion inhibition efficiency of 5-Aminotetrazole on AA6065-AZ31 alloy using electrochemical noise and artificial neural networks with different transfer functions
Different configurations of artificial neural network (ANN) models were developed and evaluated to predict the corrosion inhibition efficiency of 5-Aminotetrazole on AA6065-AZ31 alloy exposed to saline conditions (0.1 M and 0.05 M NaCl) using electrochemical noise. The training dataset consisted of 302,400 measurements from immersion tests with inhibitor concentrations of 2 mM, 4 mM, 6 mM, 8 mM, and 10 mM. The variables time, inhibitor concentration, and electrolyte concentration were used as input variables, while the output variable was electrochemical resistance. A comprehensive analysis was performed using different transfer functions in the hidden layer, including TanSig, LogSig, ElliotSig, Radbas, Softmax, dSiLU, Sqsinc, ReLU, and SoftPlus, all trained with the Levenberg-Marquardt algorithm. Among these configurations, the model employing a 9-neuron hidden layer architecture and dSiLU as transfer function achieved the best performance. The determination coefficient (R²) of 0.9983 obtained by the best model demonstrated an excellent correlation between simulated and experimental data. The corrosion inhibition efficiency predicted by the best ANN model obtained less than 4 % error, confirming the ANN's potential for accurately modeling electrochemical noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
714
审稿时长
2.6 months
期刊介绍: International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信