{"title":"用HEFT方法研究介子对撞机上的介子g−2异常","authors":"Fabiola Fortuna, Juan Manuel Márquez, Pablo Roig","doi":"10.1103/physrevd.111.075012","DOIUrl":null,"url":null,"abstract":"In a previous work, Buttazzo and Paradisi [], pointed out that heavy new physics (NP) contributions to lepton dipole moments and high-energy cross sections of lepton pairs into Higgs and γ</a:mi>/</a:mo>Z</a:mi></a:math> bosons are connected, if the electroweak symmetry breaking is realized linearly. As a consequence, a multi-TeV muon collider would provide a unique test of NP in the muon <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>g</c:mi><c:mtext>−</c:mtext><c:mn>2</c:mn></c:mrow></c:math> through the study of high-energy processes such as <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msup><e:mi>μ</e:mi><e:mo>+</e:mo></e:msup><e:msup><e:mi>μ</e:mi><e:mo>−</e:mo></e:msup><e:mo stretchy=\"false\">→</e:mo><e:mi>h</e:mi><e:mo>+</e:mo><e:mi>γ</e:mi><e:mo>/</e:mo><e:mi>Z</e:mi></e:math>. Since the analysis involved a Standard Model effective field theory (SMEFT) approach to Higgs processes, it could also be studied by the more general Higgs EFT (HEFT) formulation. We compute the modification of the high-energy cross section <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:msup><h:mi>μ</h:mi><h:mo>+</h:mo></h:msup><h:msup><h:mi>μ</h:mi><h:mo>−</h:mo></h:msup><h:mo stretchy=\"false\">→</h:mo><h:mi>h</h:mi><h:mo>+</h:mo><h:mi>γ</h:mi><h:mo>/</h:mo><h:mi>Z</h:mi></h:math> and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>h</k:mi><k:mo stretchy=\"false\">→</k:mo><k:msup><k:mi>μ</k:mi><k:mo>+</k:mo></k:msup><k:msup><k:mi>μ</k:mi><k:mo>−</k:mo></k:msup><k:mo>+</k:mo><k:mi>γ</k:mi><k:mo>/</k:mo><k:mi>Z</k:mi></k:math> decay using the dimension-6 HEFT Lagrangian and compare them with the SMEFT analysis. We find that, within the current HEFT analysis, there are plausible scenarios where the HEFT approach could lead to a higher sensitivity to test the NP contributions in the muon <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mrow><n:mi>g</n:mi><n:mtext>−</n:mtext><n:mn>2</n:mn></n:mrow></n:math>. However, a more precise knowledge of the new HEFT parameters is needed for a definite conclusion, which motivates the search for complementary measurements. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"22 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HEFT approach to investigate the muon g−2 anomaly at a muon collider\",\"authors\":\"Fabiola Fortuna, Juan Manuel Márquez, Pablo Roig\",\"doi\":\"10.1103/physrevd.111.075012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a previous work, Buttazzo and Paradisi [], pointed out that heavy new physics (NP) contributions to lepton dipole moments and high-energy cross sections of lepton pairs into Higgs and γ</a:mi>/</a:mo>Z</a:mi></a:math> bosons are connected, if the electroweak symmetry breaking is realized linearly. As a consequence, a multi-TeV muon collider would provide a unique test of NP in the muon <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mrow><c:mi>g</c:mi><c:mtext>−</c:mtext><c:mn>2</c:mn></c:mrow></c:math> through the study of high-energy processes such as <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msup><e:mi>μ</e:mi><e:mo>+</e:mo></e:msup><e:msup><e:mi>μ</e:mi><e:mo>−</e:mo></e:msup><e:mo stretchy=\\\"false\\\">→</e:mo><e:mi>h</e:mi><e:mo>+</e:mo><e:mi>γ</e:mi><e:mo>/</e:mo><e:mi>Z</e:mi></e:math>. Since the analysis involved a Standard Model effective field theory (SMEFT) approach to Higgs processes, it could also be studied by the more general Higgs EFT (HEFT) formulation. We compute the modification of the high-energy cross section <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><h:msup><h:mi>μ</h:mi><h:mo>+</h:mo></h:msup><h:msup><h:mi>μ</h:mi><h:mo>−</h:mo></h:msup><h:mo stretchy=\\\"false\\\">→</h:mo><h:mi>h</h:mi><h:mo>+</h:mo><h:mi>γ</h:mi><h:mo>/</h:mo><h:mi>Z</h:mi></h:math> and <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>h</k:mi><k:mo stretchy=\\\"false\\\">→</k:mo><k:msup><k:mi>μ</k:mi><k:mo>+</k:mo></k:msup><k:msup><k:mi>μ</k:mi><k:mo>−</k:mo></k:msup><k:mo>+</k:mo><k:mi>γ</k:mi><k:mo>/</k:mo><k:mi>Z</k:mi></k:math> decay using the dimension-6 HEFT Lagrangian and compare them with the SMEFT analysis. We find that, within the current HEFT analysis, there are plausible scenarios where the HEFT approach could lead to a higher sensitivity to test the NP contributions in the muon <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><n:mrow><n:mi>g</n:mi><n:mtext>−</n:mtext><n:mn>2</n:mn></n:mrow></n:math>. However, a more precise knowledge of the new HEFT parameters is needed for a definite conclusion, which motivates the search for complementary measurements. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.075012\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.075012","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
HEFT approach to investigate the muon g−2 anomaly at a muon collider
In a previous work, Buttazzo and Paradisi [], pointed out that heavy new physics (NP) contributions to lepton dipole moments and high-energy cross sections of lepton pairs into Higgs and γ/Z bosons are connected, if the electroweak symmetry breaking is realized linearly. As a consequence, a multi-TeV muon collider would provide a unique test of NP in the muon g−2 through the study of high-energy processes such as μ+μ−→h+γ/Z. Since the analysis involved a Standard Model effective field theory (SMEFT) approach to Higgs processes, it could also be studied by the more general Higgs EFT (HEFT) formulation. We compute the modification of the high-energy cross section μ+μ−→h+γ/Z and h→μ+μ−+γ/Z decay using the dimension-6 HEFT Lagrangian and compare them with the SMEFT analysis. We find that, within the current HEFT analysis, there are plausible scenarios where the HEFT approach could lead to a higher sensitivity to test the NP contributions in the muon g−2. However, a more precise knowledge of the new HEFT parameters is needed for a definite conclusion, which motivates the search for complementary measurements. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.