实时路径积分的有效评估

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Job Feldbrugge, Joshua Y. L. Jones
{"title":"实时路径积分的有效评估","authors":"Job Feldbrugge, Joshua Y. L. Jones","doi":"10.1103/physrevd.111.083524","DOIUrl":null,"url":null,"abstract":"The Feynman path integral has revolutionized modern approaches to quantum physics. Although the path integral formalism has proven very successful and spawned several approximation schemes, the direct evaluation of real-time path integrals is still extremely expensive and numerically delicate due to its high-dimensional and oscillatory nature. We propose an efficient method for the numerical evaluation of the real-time world-line path integral for theories where the potential is dominated by a quadratic at infinity. This is done by rewriting the high-dimensional oscillatory integral in terms of a series of low-dimensional oscillatory integrals, that we efficiently evaluate with Picard-Lefschetz theory or approximate with the eikonal approximation. Subsequently, these integrals are stitched together with a series of fast Fourier transformations to recover the lattice regularized Feynman path integral. Our method directly applies to problems in quantum mechanics, the word-line quantization of quantum field theory, and quantum gravity. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"19 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient evaluation of real-time path integrals\",\"authors\":\"Job Feldbrugge, Joshua Y. L. Jones\",\"doi\":\"10.1103/physrevd.111.083524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Feynman path integral has revolutionized modern approaches to quantum physics. Although the path integral formalism has proven very successful and spawned several approximation schemes, the direct evaluation of real-time path integrals is still extremely expensive and numerically delicate due to its high-dimensional and oscillatory nature. We propose an efficient method for the numerical evaluation of the real-time world-line path integral for theories where the potential is dominated by a quadratic at infinity. This is done by rewriting the high-dimensional oscillatory integral in terms of a series of low-dimensional oscillatory integrals, that we efficiently evaluate with Picard-Lefschetz theory or approximate with the eikonal approximation. Subsequently, these integrals are stitched together with a series of fast Fourier transformations to recover the lattice regularized Feynman path integral. Our method directly applies to problems in quantum mechanics, the word-line quantization of quantum field theory, and quantum gravity. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.083524\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.083524","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

费曼路径积分彻底改变了量子物理学的现代方法。尽管路径积分的形式被证明是非常成功的,并产生了几种近似方案,但由于其高维和振荡的性质,实时路径积分的直接评估仍然非常昂贵和数值上的微妙。我们提出了一种有效的实时世界线路径积分的数值计算方法,其中在无穷远处的势由二次元主导。这是通过将高维振荡积分改写成一系列低维振荡积分来实现的,我们可以有效地用皮卡德-莱夫谢兹理论来计算或者用eikonal近似来近似。随后,将这些积分与一系列快速傅立叶变换拼接在一起,以恢复晶格正则化费曼路径积分。我们的方法直接适用于量子力学、量子场论的字线量子化和量子引力中的问题。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient evaluation of real-time path integrals
The Feynman path integral has revolutionized modern approaches to quantum physics. Although the path integral formalism has proven very successful and spawned several approximation schemes, the direct evaluation of real-time path integrals is still extremely expensive and numerically delicate due to its high-dimensional and oscillatory nature. We propose an efficient method for the numerical evaluation of the real-time world-line path integral for theories where the potential is dominated by a quadratic at infinity. This is done by rewriting the high-dimensional oscillatory integral in terms of a series of low-dimensional oscillatory integrals, that we efficiently evaluate with Picard-Lefschetz theory or approximate with the eikonal approximation. Subsequently, these integrals are stitched together with a series of fast Fourier transformations to recover the lattice regularized Feynman path integral. Our method directly applies to problems in quantum mechanics, the word-line quantization of quantum field theory, and quantum gravity. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信