Jingheng Wang, Stanley Nithianantham, Sergio C. Chai, Young-Hwan Jung, Lei Yang, Han Wee Ong, Yong Li, Yifan Zhang, Darcie J. Miller, Taosheng Chen
{"title":"解码CYP3A4的选择性化学调节","authors":"Jingheng Wang, Stanley Nithianantham, Sergio C. Chai, Young-Hwan Jung, Lei Yang, Han Wee Ong, Yong Li, Yifan Zhang, Darcie J. Miller, Taosheng Chen","doi":"10.1038/s41467-025-58749-8","DOIUrl":null,"url":null,"abstract":"<p>Drug-drug interactions associate with concurrent uses of multiple medications. Cytochrome P450 (CYP) 3A4 metabolizes a large portion of marketed drugs. To maintain the efficacy of drugs metabolized by CYP3A4, pan-CYP3A inhibitors such as ritonavir are often co-administered. Although selective CYP3A4 inhibitors have greater therapeutic benefits as they avoid inhibiting unintended CYPs and undesirable clinical consequences, the high homology between CYP3A4 and CYP3A5 has hampered the development of such selective inhibitors. Here, we report a series of selective CYP3A4 inhibitors with scaffolds identified by high-throughput screening. Structural, functional, and computational analyses reveal that the differential C-terminal loop conformations and two distinct ligand binding surfaces disfavor the binding of selective CYP3A4 inhibitors to CYP3A5. Structure-guided design of compounds validates the model and yields analogs that are selective for CYP3A4 versus other major CYPs. These findings demonstrate the feasibility to selectively inhibit CYP3A4 and provide guidance for designing better CYP3A4 selective inhibitors.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":"3423"},"PeriodicalIF":15.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the selective chemical modulation of CYP3A4\",\"authors\":\"Jingheng Wang, Stanley Nithianantham, Sergio C. Chai, Young-Hwan Jung, Lei Yang, Han Wee Ong, Yong Li, Yifan Zhang, Darcie J. Miller, Taosheng Chen\",\"doi\":\"10.1038/s41467-025-58749-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drug-drug interactions associate with concurrent uses of multiple medications. Cytochrome P450 (CYP) 3A4 metabolizes a large portion of marketed drugs. To maintain the efficacy of drugs metabolized by CYP3A4, pan-CYP3A inhibitors such as ritonavir are often co-administered. Although selective CYP3A4 inhibitors have greater therapeutic benefits as they avoid inhibiting unintended CYPs and undesirable clinical consequences, the high homology between CYP3A4 and CYP3A5 has hampered the development of such selective inhibitors. Here, we report a series of selective CYP3A4 inhibitors with scaffolds identified by high-throughput screening. Structural, functional, and computational analyses reveal that the differential C-terminal loop conformations and two distinct ligand binding surfaces disfavor the binding of selective CYP3A4 inhibitors to CYP3A5. Structure-guided design of compounds validates the model and yields analogs that are selective for CYP3A4 versus other major CYPs. These findings demonstrate the feasibility to selectively inhibit CYP3A4 and provide guidance for designing better CYP3A4 selective inhibitors.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"12 1\",\"pages\":\"3423\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58749-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58749-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Decoding the selective chemical modulation of CYP3A4
Drug-drug interactions associate with concurrent uses of multiple medications. Cytochrome P450 (CYP) 3A4 metabolizes a large portion of marketed drugs. To maintain the efficacy of drugs metabolized by CYP3A4, pan-CYP3A inhibitors such as ritonavir are often co-administered. Although selective CYP3A4 inhibitors have greater therapeutic benefits as they avoid inhibiting unintended CYPs and undesirable clinical consequences, the high homology between CYP3A4 and CYP3A5 has hampered the development of such selective inhibitors. Here, we report a series of selective CYP3A4 inhibitors with scaffolds identified by high-throughput screening. Structural, functional, and computational analyses reveal that the differential C-terminal loop conformations and two distinct ligand binding surfaces disfavor the binding of selective CYP3A4 inhibitors to CYP3A5. Structure-guided design of compounds validates the model and yields analogs that are selective for CYP3A4 versus other major CYPs. These findings demonstrate the feasibility to selectively inhibit CYP3A4 and provide guidance for designing better CYP3A4 selective inhibitors.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.