{"title":"复合学习自适应安全临界控制及其在智能汽车自适应巡航中的应用","authors":"Jiajun Shen;Yehui Liu;Wei Wang;Zhenqian Wang","doi":"10.1109/TIE.2025.3555010","DOIUrl":null,"url":null,"abstract":"This article presents an adaptive safety critical control scheme for uncertain systems with potentially conflicting control objective and safety constraint. The modified control barrier function (MCBF) is presented to rigorously guarantee the safety constraint subject to the unavoidable parameter estimation errors, then quadratic program (QP) is employed to synthesize the control Lyapunov function (CLF) and MCBF to form the certainty equivalence controller. Since the priority of CLF is regraded and the MCBF is designed to be nonpositive definite, we employ a separate parameter update module rather than the Lyapunov-based adaptive control approaches. The composite learning method is presented to eliminate the effects of parametric uncertainties without imposing the restrictive excitation conditions, further to avoid the conservative control performance. The experimental results of adaptive cruise for intelligent vehicles are provided to verify the theoretical findings.","PeriodicalId":13402,"journal":{"name":"IEEE Transactions on Industrial Electronics","volume":"72 10","pages":"10793-10803"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Learning Adaptive Safety Critical Control With Application to Adaptive Cruise of Intelligent Vehicles\",\"authors\":\"Jiajun Shen;Yehui Liu;Wei Wang;Zhenqian Wang\",\"doi\":\"10.1109/TIE.2025.3555010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an adaptive safety critical control scheme for uncertain systems with potentially conflicting control objective and safety constraint. The modified control barrier function (MCBF) is presented to rigorously guarantee the safety constraint subject to the unavoidable parameter estimation errors, then quadratic program (QP) is employed to synthesize the control Lyapunov function (CLF) and MCBF to form the certainty equivalence controller. Since the priority of CLF is regraded and the MCBF is designed to be nonpositive definite, we employ a separate parameter update module rather than the Lyapunov-based adaptive control approaches. The composite learning method is presented to eliminate the effects of parametric uncertainties without imposing the restrictive excitation conditions, further to avoid the conservative control performance. The experimental results of adaptive cruise for intelligent vehicles are provided to verify the theoretical findings.\",\"PeriodicalId\":13402,\"journal\":{\"name\":\"IEEE Transactions on Industrial Electronics\",\"volume\":\"72 10\",\"pages\":\"10793-10803\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10963899/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10963899/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Composite Learning Adaptive Safety Critical Control With Application to Adaptive Cruise of Intelligent Vehicles
This article presents an adaptive safety critical control scheme for uncertain systems with potentially conflicting control objective and safety constraint. The modified control barrier function (MCBF) is presented to rigorously guarantee the safety constraint subject to the unavoidable parameter estimation errors, then quadratic program (QP) is employed to synthesize the control Lyapunov function (CLF) and MCBF to form the certainty equivalence controller. Since the priority of CLF is regraded and the MCBF is designed to be nonpositive definite, we employ a separate parameter update module rather than the Lyapunov-based adaptive control approaches. The composite learning method is presented to eliminate the effects of parametric uncertainties without imposing the restrictive excitation conditions, further to avoid the conservative control performance. The experimental results of adaptive cruise for intelligent vehicles are provided to verify the theoretical findings.
期刊介绍:
Journal Name: IEEE Transactions on Industrial Electronics
Publication Frequency: Monthly
Scope:
The scope of IEEE Transactions on Industrial Electronics encompasses the following areas:
Applications of electronics, controls, and communications in industrial and manufacturing systems and processes.
Power electronics and drive control techniques.
System control and signal processing.
Fault detection and diagnosis.
Power systems.
Instrumentation, measurement, and testing.
Modeling and simulation.
Motion control.
Robotics.
Sensors and actuators.
Implementation of neural networks, fuzzy logic, and artificial intelligence in industrial systems.
Factory automation.
Communication and computer networks.