复合学习自适应安全临界控制及其在智能汽车自适应巡航中的应用

IF 7.2 1区 工程技术 Q1 AUTOMATION & CONTROL SYSTEMS
Jiajun Shen;Yehui Liu;Wei Wang;Zhenqian Wang
{"title":"复合学习自适应安全临界控制及其在智能汽车自适应巡航中的应用","authors":"Jiajun Shen;Yehui Liu;Wei Wang;Zhenqian Wang","doi":"10.1109/TIE.2025.3555010","DOIUrl":null,"url":null,"abstract":"This article presents an adaptive safety critical control scheme for uncertain systems with potentially conflicting control objective and safety constraint. The modified control barrier function (MCBF) is presented to rigorously guarantee the safety constraint subject to the unavoidable parameter estimation errors, then quadratic program (QP) is employed to synthesize the control Lyapunov function (CLF) and MCBF to form the certainty equivalence controller. Since the priority of CLF is regraded and the MCBF is designed to be nonpositive definite, we employ a separate parameter update module rather than the Lyapunov-based adaptive control approaches. The composite learning method is presented to eliminate the effects of parametric uncertainties without imposing the restrictive excitation conditions, further to avoid the conservative control performance. The experimental results of adaptive cruise for intelligent vehicles are provided to verify the theoretical findings.","PeriodicalId":13402,"journal":{"name":"IEEE Transactions on Industrial Electronics","volume":"72 10","pages":"10793-10803"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Learning Adaptive Safety Critical Control With Application to Adaptive Cruise of Intelligent Vehicles\",\"authors\":\"Jiajun Shen;Yehui Liu;Wei Wang;Zhenqian Wang\",\"doi\":\"10.1109/TIE.2025.3555010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an adaptive safety critical control scheme for uncertain systems with potentially conflicting control objective and safety constraint. The modified control barrier function (MCBF) is presented to rigorously guarantee the safety constraint subject to the unavoidable parameter estimation errors, then quadratic program (QP) is employed to synthesize the control Lyapunov function (CLF) and MCBF to form the certainty equivalence controller. Since the priority of CLF is regraded and the MCBF is designed to be nonpositive definite, we employ a separate parameter update module rather than the Lyapunov-based adaptive control approaches. The composite learning method is presented to eliminate the effects of parametric uncertainties without imposing the restrictive excitation conditions, further to avoid the conservative control performance. The experimental results of adaptive cruise for intelligent vehicles are provided to verify the theoretical findings.\",\"PeriodicalId\":13402,\"journal\":{\"name\":\"IEEE Transactions on Industrial Electronics\",\"volume\":\"72 10\",\"pages\":\"10793-10803\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10963899/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10963899/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对控制目标和安全约束存在潜在冲突的不确定系统,提出了一种自适应安全临界控制方案。提出了改进的控制屏障函数(MCBF)来严格保证在不可避免的参数估计误差下的安全约束,然后采用二次规划(QP)综合控制李雅普诺夫函数(CLF)和MCBF构成确定性等效控制器。由于CLF的优先级是退化的,而MCBF被设计为非正定的,我们采用了一个单独的参数更新模块,而不是基于lyapunov的自适应控制方法。在不施加约束激励条件的情况下,采用复合学习方法消除了参数不确定性的影响,进一步避免了控制性能的保守性。给出了智能汽车自适应巡航的实验结果,验证了理论研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composite Learning Adaptive Safety Critical Control With Application to Adaptive Cruise of Intelligent Vehicles
This article presents an adaptive safety critical control scheme for uncertain systems with potentially conflicting control objective and safety constraint. The modified control barrier function (MCBF) is presented to rigorously guarantee the safety constraint subject to the unavoidable parameter estimation errors, then quadratic program (QP) is employed to synthesize the control Lyapunov function (CLF) and MCBF to form the certainty equivalence controller. Since the priority of CLF is regraded and the MCBF is designed to be nonpositive definite, we employ a separate parameter update module rather than the Lyapunov-based adaptive control approaches. The composite learning method is presented to eliminate the effects of parametric uncertainties without imposing the restrictive excitation conditions, further to avoid the conservative control performance. The experimental results of adaptive cruise for intelligent vehicles are provided to verify the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Industrial Electronics
IEEE Transactions on Industrial Electronics 工程技术-工程:电子与电气
CiteScore
16.80
自引率
9.10%
发文量
1396
审稿时长
6.3 months
期刊介绍: Journal Name: IEEE Transactions on Industrial Electronics Publication Frequency: Monthly Scope: The scope of IEEE Transactions on Industrial Electronics encompasses the following areas: Applications of electronics, controls, and communications in industrial and manufacturing systems and processes. Power electronics and drive control techniques. System control and signal processing. Fault detection and diagnosis. Power systems. Instrumentation, measurement, and testing. Modeling and simulation. Motion control. Robotics. Sensors and actuators. Implementation of neural networks, fuzzy logic, and artificial intelligence in industrial systems. Factory automation. Communication and computer networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信