基于六方金属复合物的机械坚固透明超薄金 µECoG 用于电光神经接口

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Duhee Kim, Murali Bissannagari, Boil Kim, Nari Hong, Jaeu Park, Hyeongtae Lim, Junhee Lee, Jungha Lee, Yoon Kyoung Kim, Youngjae Cho, Kwang Lee, Junghyup Lee, Jong-Hyeok Yoon, Jae Eun Jang, David Tsai, Sanghoon Lee, Hyuk-Jun Kwon, Han Kyoung Choe, Hongki Kang
{"title":"基于六方金属复合物的机械坚固透明超薄金 µECoG 用于电光神经接口","authors":"Duhee Kim, Murali Bissannagari, Boil Kim, Nari Hong, Jaeu Park, Hyeongtae Lim, Junhee Lee, Jungha Lee, Yoon Kyoung Kim, Youngjae Cho, Kwang Lee, Junghyup Lee, Jong-Hyeok Yoon, Jae Eun Jang, David Tsai, Sanghoon Lee, Hyuk-Jun Kwon, Han Kyoung Choe, Hongki Kang","doi":"10.1038/s41528-025-00403-w","DOIUrl":null,"url":null,"abstract":"<p>Transparent electro-optical neural interfacing technologies offer simultaneous high-spatial-resolution microscopic imaging, and high-temporal-resolution electrical recording and stimulation. However, fabricating transparent, flexible, and mechanically robust neural electrodes with high electrochemical performance remains challenging. In this study, we fabricated transparent (72.7% at 570 nm), mechanically robust (0.05% resistance change after 50k bending cycles) ultrathin Au microelectrodes for micro-electrocorticography (µECoG) using a hexadentate metal-polymer ligand bonding with an EDTA/PSS seed layer. These transparent µECoG arrays, fabricated with biocompatible gold, exhibit excellent electrochemical properties (0.73 Ω·cm<sup>2</sup>) for neural recording and stimulation with long-term stability. We recorded brain surface waves in vivo, maintaining a low baseline noise and a high signal-to-noise ratio during acute and two-week recordings. In addition, we successfully performed optogenetic modulation without light-induced artifacts at 7.32 mW/mm<sup>2</sup> laser power density. This approach shows great potential for scalable, implantable neural electrodes and wearable optoelectronic devices in digital healthcare systems.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"183 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexagonal metal complex based mechanically robust transparent ultrathin gold µECoG for electro-optical neural interfaces\",\"authors\":\"Duhee Kim, Murali Bissannagari, Boil Kim, Nari Hong, Jaeu Park, Hyeongtae Lim, Junhee Lee, Jungha Lee, Yoon Kyoung Kim, Youngjae Cho, Kwang Lee, Junghyup Lee, Jong-Hyeok Yoon, Jae Eun Jang, David Tsai, Sanghoon Lee, Hyuk-Jun Kwon, Han Kyoung Choe, Hongki Kang\",\"doi\":\"10.1038/s41528-025-00403-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transparent electro-optical neural interfacing technologies offer simultaneous high-spatial-resolution microscopic imaging, and high-temporal-resolution electrical recording and stimulation. However, fabricating transparent, flexible, and mechanically robust neural electrodes with high electrochemical performance remains challenging. In this study, we fabricated transparent (72.7% at 570 nm), mechanically robust (0.05% resistance change after 50k bending cycles) ultrathin Au microelectrodes for micro-electrocorticography (µECoG) using a hexadentate metal-polymer ligand bonding with an EDTA/PSS seed layer. These transparent µECoG arrays, fabricated with biocompatible gold, exhibit excellent electrochemical properties (0.73 Ω·cm<sup>2</sup>) for neural recording and stimulation with long-term stability. We recorded brain surface waves in vivo, maintaining a low baseline noise and a high signal-to-noise ratio during acute and two-week recordings. In addition, we successfully performed optogenetic modulation without light-induced artifacts at 7.32 mW/mm<sup>2</sup> laser power density. This approach shows great potential for scalable, implantable neural electrodes and wearable optoelectronic devices in digital healthcare systems.</p>\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41528-025-00403-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00403-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

透明光电神经接口技术同时提供高空间分辨率显微成像和高时间分辨率电记录和刺激。然而,制造具有高电化学性能的透明、柔性和机械鲁棒性的神经电极仍然具有挑战性。在这项研究中,我们使用六齿金属-聚合物配体与EDTA/PSS籽层结合,制作了用于微皮质电图(µECoG)的超薄金微电极,在570 nm处透明(72.7%),机械坚固(50k弯曲循环后电阻变化0.05%)。这些透明的µECoG阵列由生物相容性金制成,具有优异的电化学性能(0.73 Ω·cm2),用于神经记录和刺激,具有长期稳定性。我们在体内记录脑表面波,在急性期和两周的记录中保持低基线噪声和高信噪比。此外,我们成功地在7.32 mW/mm2激光功率密度下进行了无光致伪影的光遗传调制。这种方法显示了数字医疗系统中可扩展、可植入的神经电极和可穿戴光电设备的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hexagonal metal complex based mechanically robust transparent ultrathin gold µECoG for electro-optical neural interfaces

Hexagonal metal complex based mechanically robust transparent ultrathin gold µECoG for electro-optical neural interfaces

Transparent electro-optical neural interfacing technologies offer simultaneous high-spatial-resolution microscopic imaging, and high-temporal-resolution electrical recording and stimulation. However, fabricating transparent, flexible, and mechanically robust neural electrodes with high electrochemical performance remains challenging. In this study, we fabricated transparent (72.7% at 570 nm), mechanically robust (0.05% resistance change after 50k bending cycles) ultrathin Au microelectrodes for micro-electrocorticography (µECoG) using a hexadentate metal-polymer ligand bonding with an EDTA/PSS seed layer. These transparent µECoG arrays, fabricated with biocompatible gold, exhibit excellent electrochemical properties (0.73 Ω·cm2) for neural recording and stimulation with long-term stability. We recorded brain surface waves in vivo, maintaining a low baseline noise and a high signal-to-noise ratio during acute and two-week recordings. In addition, we successfully performed optogenetic modulation without light-induced artifacts at 7.32 mW/mm2 laser power density. This approach shows great potential for scalable, implantable neural electrodes and wearable optoelectronic devices in digital healthcare systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信