通过选择性自组装硅氧烷偶联剂实现机械稳定的丝网印刷柔性过氧化物太阳能电池

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Meiru Duan, Jinxian Yang, Tai Li, Junlin Wen, Biyun Ren, Kaiyu Wang, Yingdong Xia, Hui Zhang, Yonghua Chen
{"title":"通过选择性自组装硅氧烷偶联剂实现机械稳定的丝网印刷柔性过氧化物太阳能电池","authors":"Meiru Duan, Jinxian Yang, Tai Li, Junlin Wen, Biyun Ren, Kaiyu Wang, Yingdong Xia, Hui Zhang, Yonghua Chen","doi":"10.1038/s41528-025-00407-6","DOIUrl":null,"url":null,"abstract":"<p>Owing to unique advantages of patternability and high substrate compatibility, screen-printing allows for the fabrication of flexible perovskite solar cells (f-PSCs) with designable device patterns, while the defective and fragile contact at the buried interface seriously restricted the device performance. Herein, a series of siloxane coupling agents (SCAs) with different ending groups i.e., –SH, –NH<sub>2</sub>, and –CN were incorporated at the SnO<sub>2</sub>/perovskite interface, which can selectively interact with MA<sup>+</sup> and Pb<sup>2+</sup> via hydrogen and coordination bonding, respectively. It was revealed that the selection of (3-Cyanopropyl)Triethoxysilane (CN-PTES) can regulate perovskite crystallization with accelerated nucleation and retarded crystal growth, leading to improved crystallinity with released residual lattice strain. Moreover, the incorporated CN-PTES aligned the energy structure of the underlying SnO<sub>2</sub> and boosted the interfacial adhesion between perovskite and SnO<sub>2</sub>, resulting in facilitated electron extraction and enhanced interfacial fracture energy. Consequently, the first screen-printed f-PSCs with improved mechanical resistance were finally obtained.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"14 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically stable screen-printed flexible perovskite solar cells via selective self-assembled siloxane coupling agents\",\"authors\":\"Meiru Duan, Jinxian Yang, Tai Li, Junlin Wen, Biyun Ren, Kaiyu Wang, Yingdong Xia, Hui Zhang, Yonghua Chen\",\"doi\":\"10.1038/s41528-025-00407-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Owing to unique advantages of patternability and high substrate compatibility, screen-printing allows for the fabrication of flexible perovskite solar cells (f-PSCs) with designable device patterns, while the defective and fragile contact at the buried interface seriously restricted the device performance. Herein, a series of siloxane coupling agents (SCAs) with different ending groups i.e., –SH, –NH<sub>2</sub>, and –CN were incorporated at the SnO<sub>2</sub>/perovskite interface, which can selectively interact with MA<sup>+</sup> and Pb<sup>2+</sup> via hydrogen and coordination bonding, respectively. It was revealed that the selection of (3-Cyanopropyl)Triethoxysilane (CN-PTES) can regulate perovskite crystallization with accelerated nucleation and retarded crystal growth, leading to improved crystallinity with released residual lattice strain. Moreover, the incorporated CN-PTES aligned the energy structure of the underlying SnO<sub>2</sub> and boosted the interfacial adhesion between perovskite and SnO<sub>2</sub>, resulting in facilitated electron extraction and enhanced interfacial fracture energy. Consequently, the first screen-printed f-PSCs with improved mechanical resistance were finally obtained.</p>\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41528-025-00407-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00407-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于丝网印刷具有图案性和高衬底兼容性的独特优势,可以制造具有可设计器件图案的柔性钙钛矿太阳能电池(f-PSCs),但埋藏界面处的缺陷和脆弱接触严重限制了器件性能。在SnO2/钙钛矿界面上加入了一系列末端基团为-SH、-NH2和-CN的硅氧烷偶联剂(SCAs),分别通过氢键和配位键与MA+和Pb2+选择性相互作用。结果表明,选择(3-氰丙基)三乙氧基硅烷(CN-PTES)可以调节钙钛矿结晶,加速成核,延缓晶体生长,从而提高结晶度,释放残余晶格应变。此外,加入的CN-PTES使下层SnO2的能量结构对齐,增强了钙钛矿与SnO2之间的界面粘附,从而促进了电子的提取和界面断裂能的提高。因此,最终获得了第一个具有改善机械阻力的丝网印刷f-PSCs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanically stable screen-printed flexible perovskite solar cells via selective self-assembled siloxane coupling agents

Mechanically stable screen-printed flexible perovskite solar cells via selective self-assembled siloxane coupling agents

Owing to unique advantages of patternability and high substrate compatibility, screen-printing allows for the fabrication of flexible perovskite solar cells (f-PSCs) with designable device patterns, while the defective and fragile contact at the buried interface seriously restricted the device performance. Herein, a series of siloxane coupling agents (SCAs) with different ending groups i.e., –SH, –NH2, and –CN were incorporated at the SnO2/perovskite interface, which can selectively interact with MA+ and Pb2+ via hydrogen and coordination bonding, respectively. It was revealed that the selection of (3-Cyanopropyl)Triethoxysilane (CN-PTES) can regulate perovskite crystallization with accelerated nucleation and retarded crystal growth, leading to improved crystallinity with released residual lattice strain. Moreover, the incorporated CN-PTES aligned the energy structure of the underlying SnO2 and boosted the interfacial adhesion between perovskite and SnO2, resulting in facilitated electron extraction and enhanced interfacial fracture energy. Consequently, the first screen-printed f-PSCs with improved mechanical resistance were finally obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信