Jiang Sun , Renata Graf , Dariusz Wrzesiński , Yi Luo , Senlin Zhu , Fabio Di Nunno , Roohollah Noori , Francesco Granata
{"title":"大气极端热事件对河流热力动力学和热浪的影响","authors":"Jiang Sun , Renata Graf , Dariusz Wrzesiński , Yi Luo , Senlin Zhu , Fabio Di Nunno , Roohollah Noori , Francesco Granata","doi":"10.1016/j.jhydrol.2025.133292","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric hot temperature extremes (HTEs) can impact river water temperatures, but how HTEs affect river thermal dynamics and heatwaves is not well understood, especially at a regional scale. In this study, we used numerical modelling and field observations to quantify the contribution of HTEs to variations in river water temperatures and river heatwaves in 70 Polish rivers covering 125 gauges between 1966 and 2020. During the study time period, HTEs duration and both cumulative and maximum intensities over the studied rivers increased significantly, at average rates of 0.379 days per year, 0.582°C per year, and 0.037 °C per year, respectively. Our results showed that HTEs can accelerate river warming; despite only accounting for 4.9 % of the total days, HTEs are responsible for 25.8 %, 16.9 %, 23.7 %, 32.8 %, and 38.3 % of river warming trends at annual, spring, summer, autumn, and winter time scales. Moreover, HTEs are important drivers of both duration and severe heatwave events on the studied rivers. The results showed that though HTEs contribute to 17.8 % of the occurrence of river heatwaves, they contribute greatly (84.3 %) to the occurrence of severe heatwave events. As the first study on this topic, our findings underscore the critical role played by short-term extreme atmospheric heat events in shaping long-term river thermal dynamics.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"659 ","pages":"Article 133292"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of extreme atmospheric heat events on river thermal dynamics and heatwaves\",\"authors\":\"Jiang Sun , Renata Graf , Dariusz Wrzesiński , Yi Luo , Senlin Zhu , Fabio Di Nunno , Roohollah Noori , Francesco Granata\",\"doi\":\"10.1016/j.jhydrol.2025.133292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atmospheric hot temperature extremes (HTEs) can impact river water temperatures, but how HTEs affect river thermal dynamics and heatwaves is not well understood, especially at a regional scale. In this study, we used numerical modelling and field observations to quantify the contribution of HTEs to variations in river water temperatures and river heatwaves in 70 Polish rivers covering 125 gauges between 1966 and 2020. During the study time period, HTEs duration and both cumulative and maximum intensities over the studied rivers increased significantly, at average rates of 0.379 days per year, 0.582°C per year, and 0.037 °C per year, respectively. Our results showed that HTEs can accelerate river warming; despite only accounting for 4.9 % of the total days, HTEs are responsible for 25.8 %, 16.9 %, 23.7 %, 32.8 %, and 38.3 % of river warming trends at annual, spring, summer, autumn, and winter time scales. Moreover, HTEs are important drivers of both duration and severe heatwave events on the studied rivers. The results showed that though HTEs contribute to 17.8 % of the occurrence of river heatwaves, they contribute greatly (84.3 %) to the occurrence of severe heatwave events. As the first study on this topic, our findings underscore the critical role played by short-term extreme atmospheric heat events in shaping long-term river thermal dynamics.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"659 \",\"pages\":\"Article 133292\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169425006304\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425006304","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Impact of extreme atmospheric heat events on river thermal dynamics and heatwaves
Atmospheric hot temperature extremes (HTEs) can impact river water temperatures, but how HTEs affect river thermal dynamics and heatwaves is not well understood, especially at a regional scale. In this study, we used numerical modelling and field observations to quantify the contribution of HTEs to variations in river water temperatures and river heatwaves in 70 Polish rivers covering 125 gauges between 1966 and 2020. During the study time period, HTEs duration and both cumulative and maximum intensities over the studied rivers increased significantly, at average rates of 0.379 days per year, 0.582°C per year, and 0.037 °C per year, respectively. Our results showed that HTEs can accelerate river warming; despite only accounting for 4.9 % of the total days, HTEs are responsible for 25.8 %, 16.9 %, 23.7 %, 32.8 %, and 38.3 % of river warming trends at annual, spring, summer, autumn, and winter time scales. Moreover, HTEs are important drivers of both duration and severe heatwave events on the studied rivers. The results showed that though HTEs contribute to 17.8 % of the occurrence of river heatwaves, they contribute greatly (84.3 %) to the occurrence of severe heatwave events. As the first study on this topic, our findings underscore the critical role played by short-term extreme atmospheric heat events in shaping long-term river thermal dynamics.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.