Bence Szederkényi , Norbert K. Kovács , Tibor Czigany
{"title":"提高径向增强复合材料外壳的细胞3d打印纤维增强结构的能量吸收","authors":"Bence Szederkényi , Norbert K. Kovács , Tibor Czigany","doi":"10.1016/j.compositesb.2025.112513","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the energy absorption capabilities of cellular structures combined with carbon fiber–reinforced polymer shells. The cellular core was produced by material extrusion 3D printing, while the shells were manufactured by the hand layup of carbon fiber-epoxy prepreg. Various material and reinforcement configurations were analyzed in a combined configuration and separately on a component level. The energy absorption properties of the printed specimens were evaluated after quasi-dynamic compression tests, demonstrating that the introduced radially reinforced hoop layers significantly improved compressive load-bearing capacity by resisting delamination and, consequently, local buckling in the 3D-printed cellular structures. This led to stable failure modes and higher specific energy absorption (SEA). The hybrid structures, which combined external shells with a cellular framework, exhibited a synergistic effect, resulting in up to a 200 % improvement in SEA.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"301 ","pages":"Article 112513"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving energy absorption in cellular 3D-Printed fiber–reinforced structures with radially reinforced composite shells\",\"authors\":\"Bence Szederkényi , Norbert K. Kovács , Tibor Czigany\",\"doi\":\"10.1016/j.compositesb.2025.112513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the energy absorption capabilities of cellular structures combined with carbon fiber–reinforced polymer shells. The cellular core was produced by material extrusion 3D printing, while the shells were manufactured by the hand layup of carbon fiber-epoxy prepreg. Various material and reinforcement configurations were analyzed in a combined configuration and separately on a component level. The energy absorption properties of the printed specimens were evaluated after quasi-dynamic compression tests, demonstrating that the introduced radially reinforced hoop layers significantly improved compressive load-bearing capacity by resisting delamination and, consequently, local buckling in the 3D-printed cellular structures. This led to stable failure modes and higher specific energy absorption (SEA). The hybrid structures, which combined external shells with a cellular framework, exhibited a synergistic effect, resulting in up to a 200 % improvement in SEA.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"301 \",\"pages\":\"Article 112513\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825004147\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825004147","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving energy absorption in cellular 3D-Printed fiber–reinforced structures with radially reinforced composite shells
This study investigates the energy absorption capabilities of cellular structures combined with carbon fiber–reinforced polymer shells. The cellular core was produced by material extrusion 3D printing, while the shells were manufactured by the hand layup of carbon fiber-epoxy prepreg. Various material and reinforcement configurations were analyzed in a combined configuration and separately on a component level. The energy absorption properties of the printed specimens were evaluated after quasi-dynamic compression tests, demonstrating that the introduced radially reinforced hoop layers significantly improved compressive load-bearing capacity by resisting delamination and, consequently, local buckling in the 3D-printed cellular structures. This led to stable failure modes and higher specific energy absorption (SEA). The hybrid structures, which combined external shells with a cellular framework, exhibited a synergistic effect, resulting in up to a 200 % improvement in SEA.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.