IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mohsen Mohammadi, Saeed Mardi, Jaywant Phopase, Filippa Wentz, Jibin J. Samuel, Ujwala Ail, Magnus Berggren, Reverant Crispin, Klas Tybrandt, Aiman Rahmanudin
{"title":"Make it flow from solid to liquid: Redox-active electrofluids for intrinsically stretchable batteries","authors":"Mohsen Mohammadi,&nbsp;Saeed Mardi,&nbsp;Jaywant Phopase,&nbsp;Filippa Wentz,&nbsp;Jibin J. Samuel,&nbsp;Ujwala Ail,&nbsp;Magnus Berggren,&nbsp;Reverant Crispin,&nbsp;Klas Tybrandt,&nbsp;Aiman Rahmanudin","doi":"10.1126/sciadv.adr9010","DOIUrl":null,"url":null,"abstract":"<div >High-capacity stretchable batteries are crucial for next-generation wearables to enable long-term operation and mechanical conformability with the human user. In existing stretchable battery designs, increasing the active material to yield higher capacity often leads to thicker and stiffer solid electrodes with poor mechanical properties. Here, we present a concept that transfers the physical property of a battery electrode from a conventional solid into a fluid state. The mechanical and electrochemical properties of the electrode rely on the viscosity of fluids rather than Young’s modulus of solids. Fluids conform easily into any shape with minimal force, making them intrinsically deformable. This decouples the electrochemical and mechanical property of the redox-active electrofluid, leading to higher capacities with more active material loading without stiffening the cell. The cell showed excellent capacity retention over 500 charge-discharge cycles and mechanical robustness up to 100% strain. Our work provides a technological solution for stretchable batteries that balances capacity and mechanical performance.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 15","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr9010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr9010","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高容量可拉伸电池对下一代可穿戴设备至关重要,因为它能使设备长期运行,并在机械性能上与人类用户保持一致。在现有的可拉伸电池设计中,增加活性材料以获得更高容量往往会导致固体电极变厚、变硬,机械性能变差。在这里,我们提出了一个概念,将电池电极的物理特性从传统的固态转移到流体状态。电极的机械和电化学特性依赖于流体的粘度,而不是固体的杨氏模量。流体只需极小的力就能轻松形成任何形状,因此具有内在的可变形性。这就使氧化还原活性电流体的电化学特性和机械特性脱钩,从而在不使电池变硬的情况下,以更多的活性材料负载获得更高的容量。该电池在 500 次充放电循环中表现出卓越的容量保持能力和高达 100% 应变的机械坚固性。我们的工作为可拉伸电池提供了一种技术解决方案,可在容量和机械性能之间取得平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Make it flow from solid to liquid: Redox-active electrofluids for intrinsically stretchable batteries

Make it flow from solid to liquid: Redox-active electrofluids for intrinsically stretchable batteries
High-capacity stretchable batteries are crucial for next-generation wearables to enable long-term operation and mechanical conformability with the human user. In existing stretchable battery designs, increasing the active material to yield higher capacity often leads to thicker and stiffer solid electrodes with poor mechanical properties. Here, we present a concept that transfers the physical property of a battery electrode from a conventional solid into a fluid state. The mechanical and electrochemical properties of the electrode rely on the viscosity of fluids rather than Young’s modulus of solids. Fluids conform easily into any shape with minimal force, making them intrinsically deformable. This decouples the electrochemical and mechanical property of the redox-active electrofluid, leading to higher capacities with more active material loading without stiffening the cell. The cell showed excellent capacity retention over 500 charge-discharge cycles and mechanical robustness up to 100% strain. Our work provides a technological solution for stretchable batteries that balances capacity and mechanical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信