导波和非导波电磁集成电路波在局部特征频率附近的非对称传播参数研究

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Xiang Xu, Chen Zhou
{"title":"导波和非导波电磁集成电路波在局部特征频率附近的非对称传播参数研究","authors":"Xiang Xu,&nbsp;Chen Zhou","doi":"10.1029/2024JA033505","DOIUrl":null,"url":null,"abstract":"<p>Previous studies demonstrate that the propagation of the guided and unguided electromagnetic ion cyclotron (EMIC) waves near the local characteristic frequencies in a dipole field shows prominent asymmetry with the wave vector <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $\\mathbf{k}$</annotation>\n </semantics></math> pointing toward lower L shells (wave normal angle <span></span><math>\n <semantics>\n <mrow>\n <mi>ψ</mi>\n <mo>&lt;</mo>\n <msup>\n <mn>0</mn>\n <mo>∘</mo>\n </msup>\n </mrow>\n <annotation> $\\psi &lt; {0}^{\\circ }$</annotation>\n </semantics></math>) and higher L shells (<span></span><math>\n <semantics>\n <mrow>\n <mi>ψ</mi>\n <mo>&gt;</mo>\n <msup>\n <mn>0</mn>\n <mo>∘</mo>\n </msup>\n </mrow>\n <annotation> $\\psi &gt; {0}^{\\circ }$</annotation>\n </semantics></math>) at low magnetic latitudes (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>θ</mi>\n <mi>M</mi>\n </msub>\n <mo>&lt;</mo>\n <msup>\n <mn>20</mn>\n <mo>∘</mo>\n </msup>\n </mrow>\n <annotation> ${\\theta }_{M}&lt; {20}^{\\circ }$</annotation>\n </semantics></math>) using representative cases. The <span></span><math>\n <semantics>\n <mrow>\n <mi>ψ</mi>\n </mrow>\n <annotation> $\\psi $</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>θ</mi>\n <mi>M</mi>\n </msub>\n </mrow>\n <annotation> ${\\theta }_{M}$</annotation>\n </semantics></math> dependence of this asymmetric behavior and the role of magnetic gradients in this process are not clear. Using full-wave simulations and ray theories, a parametric study is conducted to address these questions. We find that the refraction due to the magnetic gradient term can be quantified by <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>Ψ</mi>\n </mrow>\n <annotation> ${\\Delta }{\\Psi }$</annotation>\n </semantics></math> (the variation of <span></span><math>\n <semantics>\n <mrow>\n <mi>ψ</mi>\n </mrow>\n <annotation> $\\psi $</annotation>\n </semantics></math> during the wavelength) primarily contributed by the product of the normalized derivative of the refractive index, the magnetic gradient and the unit vector perpendicular to <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $\\mathbf{k}$</annotation>\n </semantics></math>. At low <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>θ</mi>\n <mi>M</mi>\n </msub>\n </mrow>\n <annotation> ${\\theta }_{M}$</annotation>\n </semantics></math>, the sign of <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>Ψ</mi>\n </mrow>\n <annotation> ${\\Delta }{\\Psi }$</annotation>\n </semantics></math> generally remains constant and <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mrow>\n <mi>Δ</mi>\n <mi>Ψ</mi>\n </mrow>\n <mo>|</mo>\n </mrow>\n <annotation> $\\vert {\\Delta }{\\Psi }\\vert $</annotation>\n </semantics></math> is large so that <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $\\mathbf{k}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>ψ</mi>\n <mo>&gt;</mo>\n <msup>\n <mn>0</mn>\n <mo>∘</mo>\n </msup>\n </mrow>\n <annotation> $\\psi &gt; {0}^{\\circ }$</annotation>\n </semantics></math> keeps deviating from the field line while <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $\\mathbf{k}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>ψ</mi>\n <mo>&lt;</mo>\n <msup>\n <mn>0</mn>\n <mo>∘</mo>\n </msup>\n </mrow>\n <annotation> $\\psi &lt; {0}^{\\circ }$</annotation>\n </semantics></math> has the potential to be close to the field line. This explains that the guided left-handedly polarized (LHP) EMIC wave with <span></span><math>\n <semantics>\n <mrow>\n <mi>ψ</mi>\n <mo>&lt;</mo>\n <msup>\n <mn>0</mn>\n <mo>∘</mo>\n </msup>\n </mrow>\n <annotation> $\\psi &lt; {0}^{\\circ }$</annotation>\n </semantics></math> may reverse its polarization and propagates to much lower altitudes if <span></span><math>\n <semantics>\n <mrow>\n <mi>ψ</mi>\n </mrow>\n <annotation> $\\psi $</annotation>\n </semantics></math> is within certain angular window. This also explains the <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $\\mathbf{k}$</annotation>\n </semantics></math> for the maximum coupling efficiency from the unguided to guided LHP EMIC mode can be tens of degrees away from the field-aligned direction. As <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>θ</mi>\n <mi>M</mi>\n </msub>\n </mrow>\n <annotation> ${\\theta }_{M}$</annotation>\n </semantics></math> increases, the asymmetry of <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>Ψ</mi>\n </mrow>\n <annotation> ${\\Delta }{\\Psi }$</annotation>\n </semantics></math> and the propagation of EMIC waves near the local characteristic frequencies becomes smaller.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric Study of Asymmetric Propagation of Guided and Unguided EMIC Waves Near the Local Characteristic Frequencies\",\"authors\":\"Xiang Xu,&nbsp;Chen Zhou\",\"doi\":\"10.1029/2024JA033505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Previous studies demonstrate that the propagation of the guided and unguided electromagnetic ion cyclotron (EMIC) waves near the local characteristic frequencies in a dipole field shows prominent asymmetry with the wave vector <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $\\\\mathbf{k}$</annotation>\\n </semantics></math> pointing toward lower L shells (wave normal angle <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ψ</mi>\\n <mo>&lt;</mo>\\n <msup>\\n <mn>0</mn>\\n <mo>∘</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\psi &lt; {0}^{\\\\circ }$</annotation>\\n </semantics></math>) and higher L shells (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ψ</mi>\\n <mo>&gt;</mo>\\n <msup>\\n <mn>0</mn>\\n <mo>∘</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\psi &gt; {0}^{\\\\circ }$</annotation>\\n </semantics></math>) at low magnetic latitudes (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n <mi>M</mi>\\n </msub>\\n <mo>&lt;</mo>\\n <msup>\\n <mn>20</mn>\\n <mo>∘</mo>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\theta }_{M}&lt; {20}^{\\\\circ }$</annotation>\\n </semantics></math>) using representative cases. The <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ψ</mi>\\n </mrow>\\n <annotation> $\\\\psi $</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n <mi>M</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\theta }_{M}$</annotation>\\n </semantics></math> dependence of this asymmetric behavior and the role of magnetic gradients in this process are not clear. Using full-wave simulations and ray theories, a parametric study is conducted to address these questions. We find that the refraction due to the magnetic gradient term can be quantified by <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>Ψ</mi>\\n </mrow>\\n <annotation> ${\\\\Delta }{\\\\Psi }$</annotation>\\n </semantics></math> (the variation of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ψ</mi>\\n </mrow>\\n <annotation> $\\\\psi $</annotation>\\n </semantics></math> during the wavelength) primarily contributed by the product of the normalized derivative of the refractive index, the magnetic gradient and the unit vector perpendicular to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $\\\\mathbf{k}$</annotation>\\n </semantics></math>. At low <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n <mi>M</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\theta }_{M}$</annotation>\\n </semantics></math>, the sign of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>Ψ</mi>\\n </mrow>\\n <annotation> ${\\\\Delta }{\\\\Psi }$</annotation>\\n </semantics></math> generally remains constant and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>Ψ</mi>\\n </mrow>\\n <mo>|</mo>\\n </mrow>\\n <annotation> $\\\\vert {\\\\Delta }{\\\\Psi }\\\\vert $</annotation>\\n </semantics></math> is large so that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $\\\\mathbf{k}$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ψ</mi>\\n <mo>&gt;</mo>\\n <msup>\\n <mn>0</mn>\\n <mo>∘</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\psi &gt; {0}^{\\\\circ }$</annotation>\\n </semantics></math> keeps deviating from the field line while <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $\\\\mathbf{k}$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ψ</mi>\\n <mo>&lt;</mo>\\n <msup>\\n <mn>0</mn>\\n <mo>∘</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\psi &lt; {0}^{\\\\circ }$</annotation>\\n </semantics></math> has the potential to be close to the field line. This explains that the guided left-handedly polarized (LHP) EMIC wave with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ψ</mi>\\n <mo>&lt;</mo>\\n <msup>\\n <mn>0</mn>\\n <mo>∘</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\psi &lt; {0}^{\\\\circ }$</annotation>\\n </semantics></math> may reverse its polarization and propagates to much lower altitudes if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ψ</mi>\\n </mrow>\\n <annotation> $\\\\psi $</annotation>\\n </semantics></math> is within certain angular window. This also explains the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $\\\\mathbf{k}$</annotation>\\n </semantics></math> for the maximum coupling efficiency from the unguided to guided LHP EMIC mode can be tens of degrees away from the field-aligned direction. As <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n <mi>M</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\theta }_{M}$</annotation>\\n </semantics></math> increases, the asymmetry of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>Ψ</mi>\\n </mrow>\\n <annotation> ${\\\\Delta }{\\\\Psi }$</annotation>\\n </semantics></math> and the propagation of EMIC waves near the local characteristic frequencies becomes smaller.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033505\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033505","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

先前的研究表明,在偶极子场中,在局域特征频率附近,引导和非引导电磁离子回旋波的传播表现出明显的不对称性,波矢量k $\mathbf{k}$指向下L壳层(波法向角ψ &lt;0°$\psi < {0}^{\circ }$)和更高的L层(ψ &gt;0°$\psi > {0}^{\circ }$)低磁纬度(θ M &lt;20°${\theta }_{M}< {20}^{\circ }$)使用代表性案例。这种不对称行为的ψ $\psi $和θ M ${\theta }_{M}$的依赖关系以及磁梯度在这一过程中的作用尚不清楚。利用全波模拟和射线理论,对这些问题进行了参数化研究。我们发现由于磁梯度项引起的折射可以通过Δ Ψ ${\Delta }{\Psi }$ (Ψ $\psi $在波长期间的变化)来量化,这主要是由折射率的归一化导数的乘积,磁梯度和垂直于k的单位矢量$\mathbf{k}$。在低θ M ${\theta }_{M}$时,Δ Ψ ${\Delta }{\Psi }$的符号一般保持不变,| Δ Ψ | $\vert {\Delta }{\Psi }\vert $较大,因此k $\mathbf{k}$带ψ &gt;0°$\psi > {0}^{\circ }$在k $\mathbf{k}$与ψ &lt;0°$\psi < {0}^{\circ }$有可能靠近场线。这解释了带ψ &lt的导左极化(LHP)位波;如果ψ $\psi $在一定的角窗内,0°$\psi < {0}^{\circ }$可能会逆转其极化,传播到更低的高度。这也解释了从非制导到制导LHP EMIC模式的最大耦合效率k $\mathbf{k}$可能与场对准方向相差数十度。随着θ M ${\theta }_{M}$的增大,Δ Ψ ${\Delta }{\Psi }$的不对称性和主位波在局域特征频率附近的传播变小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric Study of Asymmetric Propagation of Guided and Unguided EMIC Waves Near the Local Characteristic Frequencies

Previous studies demonstrate that the propagation of the guided and unguided electromagnetic ion cyclotron (EMIC) waves near the local characteristic frequencies in a dipole field shows prominent asymmetry with the wave vector k $\mathbf{k}$ pointing toward lower L shells (wave normal angle ψ < 0 $\psi < {0}^{\circ }$ ) and higher L shells ( ψ > 0 $\psi > {0}^{\circ }$ ) at low magnetic latitudes ( θ M < 20 ${\theta }_{M}< {20}^{\circ }$ ) using representative cases. The ψ $\psi $ and θ M ${\theta }_{M}$ dependence of this asymmetric behavior and the role of magnetic gradients in this process are not clear. Using full-wave simulations and ray theories, a parametric study is conducted to address these questions. We find that the refraction due to the magnetic gradient term can be quantified by Δ Ψ ${\Delta }{\Psi }$ (the variation of ψ $\psi $ during the wavelength) primarily contributed by the product of the normalized derivative of the refractive index, the magnetic gradient and the unit vector perpendicular to k $\mathbf{k}$ . At low θ M ${\theta }_{M}$ , the sign of Δ Ψ ${\Delta }{\Psi }$ generally remains constant and | Δ Ψ | $\vert {\Delta }{\Psi }\vert $ is large so that k $\mathbf{k}$ with ψ > 0 $\psi > {0}^{\circ }$ keeps deviating from the field line while k $\mathbf{k}$ with ψ < 0 $\psi < {0}^{\circ }$ has the potential to be close to the field line. This explains that the guided left-handedly polarized (LHP) EMIC wave with ψ < 0 $\psi < {0}^{\circ }$ may reverse its polarization and propagates to much lower altitudes if ψ $\psi $ is within certain angular window. This also explains the k $\mathbf{k}$ for the maximum coupling efficiency from the unguided to guided LHP EMIC mode can be tens of degrees away from the field-aligned direction. As θ M ${\theta }_{M}$ increases, the asymmetry of Δ Ψ ${\Delta }{\Psi }$ and the propagation of EMIC waves near the local characteristic frequencies becomes smaller.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信