{"title":"电压敏感染料光学记录揭示小鼠胚胎发育过程中听脑干核的功能发育","authors":"Yoko Momose-Sato, Katsushige Sato","doi":"10.1111/ejn.70106","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A fundamental question in auditory neuroscience is when and how complex connections between the nuclei/centers are organized during ontogenesis. In the present study, we applied a multiple-site optical recording technique with a voltage-sensitive dye and surveyed the developmental organization of the auditory system in the mouse embryo. Stimulation of the cochlear (auditory) nerve elicited excitatory postsynaptic potential (EPSP)-related optical responses in the lateral brainstem, which corresponded to the auditory sensory nucleus, namely, the cochlear nucleus. The EPSP was mediated by glutamate and mainly dependent on <i>N</i>-methyl-d-aspartate (NMDA) receptors. The EPSP was first detected at E (embryonic day) 12, indicating that functional connections between the periphery and neurons in the cochlear nucleus are established at this stage. At later developmental stages, cochlear nerve stimulation elicited additional postsynaptic responses in the ipsilateral and contralateral ventral brainstem, which corresponded to the higher center of the auditory pathway, the superior olivary complex (SOC). The EPSP in the SOC was detected from E15 in normal physiological solution and E14 in a Mg<sup>2+</sup>-free solution. Thus, the synaptic connections between the cochlear nucleus and the SOC are established by E14, but they are suppressed by the Mg<sup>2+</sup> block on the NMDA receptors before E15. Overall, our results suggest that postsynaptic responses in the cochlear nucleus and the SOC exhibit much earlier than previously reported, and functional synapses are generated soon after the arrival of afferent fibers and before morphological differentiation of the brainstem nuclei has been completed.</p>\n </div>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Development of the Auditory Brainstem Nuclei During Embryogenesis of the Mouse Revealed by Optical Recording With a Voltage-Sensitive Dye\",\"authors\":\"Yoko Momose-Sato, Katsushige Sato\",\"doi\":\"10.1111/ejn.70106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A fundamental question in auditory neuroscience is when and how complex connections between the nuclei/centers are organized during ontogenesis. In the present study, we applied a multiple-site optical recording technique with a voltage-sensitive dye and surveyed the developmental organization of the auditory system in the mouse embryo. Stimulation of the cochlear (auditory) nerve elicited excitatory postsynaptic potential (EPSP)-related optical responses in the lateral brainstem, which corresponded to the auditory sensory nucleus, namely, the cochlear nucleus. The EPSP was mediated by glutamate and mainly dependent on <i>N</i>-methyl-d-aspartate (NMDA) receptors. The EPSP was first detected at E (embryonic day) 12, indicating that functional connections between the periphery and neurons in the cochlear nucleus are established at this stage. At later developmental stages, cochlear nerve stimulation elicited additional postsynaptic responses in the ipsilateral and contralateral ventral brainstem, which corresponded to the higher center of the auditory pathway, the superior olivary complex (SOC). The EPSP in the SOC was detected from E15 in normal physiological solution and E14 in a Mg<sup>2+</sup>-free solution. Thus, the synaptic connections between the cochlear nucleus and the SOC are established by E14, but they are suppressed by the Mg<sup>2+</sup> block on the NMDA receptors before E15. Overall, our results suggest that postsynaptic responses in the cochlear nucleus and the SOC exhibit much earlier than previously reported, and functional synapses are generated soon after the arrival of afferent fibers and before morphological differentiation of the brainstem nuclei has been completed.</p>\\n </div>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"61 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70106\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70106","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Functional Development of the Auditory Brainstem Nuclei During Embryogenesis of the Mouse Revealed by Optical Recording With a Voltage-Sensitive Dye
A fundamental question in auditory neuroscience is when and how complex connections between the nuclei/centers are organized during ontogenesis. In the present study, we applied a multiple-site optical recording technique with a voltage-sensitive dye and surveyed the developmental organization of the auditory system in the mouse embryo. Stimulation of the cochlear (auditory) nerve elicited excitatory postsynaptic potential (EPSP)-related optical responses in the lateral brainstem, which corresponded to the auditory sensory nucleus, namely, the cochlear nucleus. The EPSP was mediated by glutamate and mainly dependent on N-methyl-d-aspartate (NMDA) receptors. The EPSP was first detected at E (embryonic day) 12, indicating that functional connections between the periphery and neurons in the cochlear nucleus are established at this stage. At later developmental stages, cochlear nerve stimulation elicited additional postsynaptic responses in the ipsilateral and contralateral ventral brainstem, which corresponded to the higher center of the auditory pathway, the superior olivary complex (SOC). The EPSP in the SOC was detected from E15 in normal physiological solution and E14 in a Mg2+-free solution. Thus, the synaptic connections between the cochlear nucleus and the SOC are established by E14, but they are suppressed by the Mg2+ block on the NMDA receptors before E15. Overall, our results suggest that postsynaptic responses in the cochlear nucleus and the SOC exhibit much earlier than previously reported, and functional synapses are generated soon after the arrival of afferent fibers and before morphological differentiation of the brainstem nuclei has been completed.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.