Michal Camejo-Harry, Jon Blundy, Euan J. F. Mutch, Thomas Hudson, John-Michael Kendall, Thomas Christopher, Rodrigo Contreras-Arratia, Joan L. Latchman, Leanka Henry
{"title":"圣文森特La soufri<e:1>火山2020/2021年喷发前岩浆动员年的岩石学证据","authors":"Michal Camejo-Harry, Jon Blundy, Euan J. F. Mutch, Thomas Hudson, John-Michael Kendall, Thomas Christopher, Rodrigo Contreras-Arratia, Joan L. Latchman, Leanka Henry","doi":"10.1029/2024GC012093","DOIUrl":null,"url":null,"abstract":"<p>Anticipating the onset of the 2020/2021 effusive-explosive eruptive sequence at La Soufrière volcano, St. Vincent was challenging despite the established monitoring networks in operation. Here, we integrate petrological data to decipher retrospectively signs of imminent eruption from available pre-eruptive monitoring data. Using diffusion chronometry, we estimated the timescales over which magmas transported to the surface. We examined olivine crystals hosted in basaltic andesite scoria, categorizing them into four groups based on their textures (euhedral to anhedral) and core compositions (Fo<sub>73–89</sub>). Multiply zoned olivine populations are tracked through a multi-stage journey from depth to surface corresponding to periods of magma ascent and accumulation years before eventual eruption. This correlates temporally with two phases of unrest from monitoring data: (a) a protracted <i>priming</i> phase (lasting more than a decade) manifesting in low-level seismicity, small crater transformations (rockfalls and new fumaroles) and an elevated CO<sub>2</sub> degassing signal; and (b) a subsequent <i>transition</i> phase, initiating just over a year before eruption with the onset of geophysical unrest in the form of discrete episodes of elevated seismicity and volcano inflation. Our findings provide new insight into the dynamics of magma mobilization at La Soufrière. We demonstrate that magmatic unrest in the roots of the sub-volcanic system precedes geophysical precursors by years, drawing connections between individually ambiguous surface signals over long timescales. Monitoring strategies optimized to detect early stages of magmatic unrest, such as identifying and locating rarer deep seismicity and routine sampling at the crater plume, could improve future responses to volcanic crises in St. Vincent.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012093","citationCount":"0","resultStr":"{\"title\":\"Petrological Evidence for Magma Mobilization Years Before the 2020/2021 Eruption of La Soufrière Volcano, St. Vincent\",\"authors\":\"Michal Camejo-Harry, Jon Blundy, Euan J. F. Mutch, Thomas Hudson, John-Michael Kendall, Thomas Christopher, Rodrigo Contreras-Arratia, Joan L. Latchman, Leanka Henry\",\"doi\":\"10.1029/2024GC012093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anticipating the onset of the 2020/2021 effusive-explosive eruptive sequence at La Soufrière volcano, St. Vincent was challenging despite the established monitoring networks in operation. Here, we integrate petrological data to decipher retrospectively signs of imminent eruption from available pre-eruptive monitoring data. Using diffusion chronometry, we estimated the timescales over which magmas transported to the surface. We examined olivine crystals hosted in basaltic andesite scoria, categorizing them into four groups based on their textures (euhedral to anhedral) and core compositions (Fo<sub>73–89</sub>). Multiply zoned olivine populations are tracked through a multi-stage journey from depth to surface corresponding to periods of magma ascent and accumulation years before eventual eruption. This correlates temporally with two phases of unrest from monitoring data: (a) a protracted <i>priming</i> phase (lasting more than a decade) manifesting in low-level seismicity, small crater transformations (rockfalls and new fumaroles) and an elevated CO<sub>2</sub> degassing signal; and (b) a subsequent <i>transition</i> phase, initiating just over a year before eruption with the onset of geophysical unrest in the form of discrete episodes of elevated seismicity and volcano inflation. Our findings provide new insight into the dynamics of magma mobilization at La Soufrière. We demonstrate that magmatic unrest in the roots of the sub-volcanic system precedes geophysical precursors by years, drawing connections between individually ambiguous surface signals over long timescales. Monitoring strategies optimized to detect early stages of magmatic unrest, such as identifying and locating rarer deep seismicity and routine sampling at the crater plume, could improve future responses to volcanic crises in St. Vincent.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012093\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012093","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Petrological Evidence for Magma Mobilization Years Before the 2020/2021 Eruption of La Soufrière Volcano, St. Vincent
Anticipating the onset of the 2020/2021 effusive-explosive eruptive sequence at La Soufrière volcano, St. Vincent was challenging despite the established monitoring networks in operation. Here, we integrate petrological data to decipher retrospectively signs of imminent eruption from available pre-eruptive monitoring data. Using diffusion chronometry, we estimated the timescales over which magmas transported to the surface. We examined olivine crystals hosted in basaltic andesite scoria, categorizing them into four groups based on their textures (euhedral to anhedral) and core compositions (Fo73–89). Multiply zoned olivine populations are tracked through a multi-stage journey from depth to surface corresponding to periods of magma ascent and accumulation years before eventual eruption. This correlates temporally with two phases of unrest from monitoring data: (a) a protracted priming phase (lasting more than a decade) manifesting in low-level seismicity, small crater transformations (rockfalls and new fumaroles) and an elevated CO2 degassing signal; and (b) a subsequent transition phase, initiating just over a year before eruption with the onset of geophysical unrest in the form of discrete episodes of elevated seismicity and volcano inflation. Our findings provide new insight into the dynamics of magma mobilization at La Soufrière. We demonstrate that magmatic unrest in the roots of the sub-volcanic system precedes geophysical precursors by years, drawing connections between individually ambiguous surface signals over long timescales. Monitoring strategies optimized to detect early stages of magmatic unrest, such as identifying and locating rarer deep seismicity and routine sampling at the crater plume, could improve future responses to volcanic crises in St. Vincent.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.