{"title":"辛势垒的定量结果","authors":"Pazit Haim-Kislev, Richard Hind, Yaron Ostrover","doi":"10.1112/jlms.70144","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present some quantitative results concerning symplectic barriers. In particular, we answer a question raised by Sackel, Song, Varolgunes, and Zhu regarding the symplectic size of the <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$2n$</annotation>\n </semantics></math>-dimensional Euclidean ball with a codimension-two linear subspace removed.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative results on symplectic barriers\",\"authors\":\"Pazit Haim-Kislev, Richard Hind, Yaron Ostrover\",\"doi\":\"10.1112/jlms.70144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present some quantitative results concerning symplectic barriers. In particular, we answer a question raised by Sackel, Song, Varolgunes, and Zhu regarding the symplectic size of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$2n$</annotation>\\n </semantics></math>-dimensional Euclidean ball with a codimension-two linear subspace removed.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70144\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70144","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we present some quantitative results concerning symplectic barriers. In particular, we answer a question raised by Sackel, Song, Varolgunes, and Zhu regarding the symplectic size of the -dimensional Euclidean ball with a codimension-two linear subspace removed.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.