{"title":"-受体阻滞剂在水环境中的生物降解:发生、生态毒性及其途径综述","authors":"Anisa Ratnasari, Samrendra Singh Thakur, Isti Faizati Zainiyah, Ramaraj Boopathy, Edza Aria Wikurendra","doi":"10.1007/s40726-025-00351-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Beta-blockers are drugs generally used to treat cardiovascular disorders. They commonly occur in water environments and cause significant threats to aquatic organisms. Therefore, removing these compounds from the environment is essential for maintaining environmental stability. The microbial biodegradation of beta-blockers has recently gained more attention due to their applicability, environment-friendliness, and cost-effectiveness. In this context, this review aims to identify the existing microorganisms and the pathways involved in the biodegradation of beta-blockers.</p><h3>Recent Findings</h3><p>The finding suggested that microorganisms, including archaea, bacteria, and fungi, are the major groups involved in the biodegradation of atenolol, metoprolol, and propranolol. Generally, microbes transform these complex compounds into less harmful metabolites; for instance, in biodegradation pathways of atenolol, metoprolol, and propanol transformed into atenolol acid, metoprolol acid, and carboxylic acid, respectively.</p><h3>Summary</h3><p>This review critically exposes the biodegradation process of beta-blockers using microorganisms and their pathways. Although numerous metabolites and enzymes have already been identified in the biodegradation of beta-blockers, several enzymes and metabolites still need to be explored.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overarching Critical Review on Beta-Blocker Biodegradation: Occurrence, Ecotoxicity, and Their Pathways in Water Environments\",\"authors\":\"Anisa Ratnasari, Samrendra Singh Thakur, Isti Faizati Zainiyah, Ramaraj Boopathy, Edza Aria Wikurendra\",\"doi\":\"10.1007/s40726-025-00351-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose of Review</h3><p>Beta-blockers are drugs generally used to treat cardiovascular disorders. They commonly occur in water environments and cause significant threats to aquatic organisms. Therefore, removing these compounds from the environment is essential for maintaining environmental stability. The microbial biodegradation of beta-blockers has recently gained more attention due to their applicability, environment-friendliness, and cost-effectiveness. In this context, this review aims to identify the existing microorganisms and the pathways involved in the biodegradation of beta-blockers.</p><h3>Recent Findings</h3><p>The finding suggested that microorganisms, including archaea, bacteria, and fungi, are the major groups involved in the biodegradation of atenolol, metoprolol, and propranolol. Generally, microbes transform these complex compounds into less harmful metabolites; for instance, in biodegradation pathways of atenolol, metoprolol, and propanol transformed into atenolol acid, metoprolol acid, and carboxylic acid, respectively.</p><h3>Summary</h3><p>This review critically exposes the biodegradation process of beta-blockers using microorganisms and their pathways. Although numerous metabolites and enzymes have already been identified in the biodegradation of beta-blockers, several enzymes and metabolites still need to be explored.</p></div>\",\"PeriodicalId\":528,\"journal\":{\"name\":\"Current Pollution Reports\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pollution Reports\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40726-025-00351-z\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-025-00351-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An Overarching Critical Review on Beta-Blocker Biodegradation: Occurrence, Ecotoxicity, and Their Pathways in Water Environments
Purpose of Review
Beta-blockers are drugs generally used to treat cardiovascular disorders. They commonly occur in water environments and cause significant threats to aquatic organisms. Therefore, removing these compounds from the environment is essential for maintaining environmental stability. The microbial biodegradation of beta-blockers has recently gained more attention due to their applicability, environment-friendliness, and cost-effectiveness. In this context, this review aims to identify the existing microorganisms and the pathways involved in the biodegradation of beta-blockers.
Recent Findings
The finding suggested that microorganisms, including archaea, bacteria, and fungi, are the major groups involved in the biodegradation of atenolol, metoprolol, and propranolol. Generally, microbes transform these complex compounds into less harmful metabolites; for instance, in biodegradation pathways of atenolol, metoprolol, and propanol transformed into atenolol acid, metoprolol acid, and carboxylic acid, respectively.
Summary
This review critically exposes the biodegradation process of beta-blockers using microorganisms and their pathways. Although numerous metabolites and enzymes have already been identified in the biodegradation of beta-blockers, several enzymes and metabolites still need to be explored.
期刊介绍:
Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.