利用机器学习生成GISS模型e校准物理集成(CPE)

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Gregory S. Elsaesser, Marcus van Lier-Walqui, Qingyuan Yang, Maxwell Kelley, Andrew S. Ackerman, Ann M. Fridlind, Gregory V. Cesana, Gavin A. Schmidt, Jingbo Wu, Ali Behrangi, Suzana J. Camargo, Bithi De, Kuniaki Inoue, Nicolas M. Leitmann-Niimi, Jeffrey D. O. Strong
{"title":"利用机器学习生成GISS模型e校准物理集成(CPE)","authors":"Gregory S. Elsaesser,&nbsp;Marcus van Lier-Walqui,&nbsp;Qingyuan Yang,&nbsp;Maxwell Kelley,&nbsp;Andrew S. Ackerman,&nbsp;Ann M. Fridlind,&nbsp;Gregory V. Cesana,&nbsp;Gavin A. Schmidt,&nbsp;Jingbo Wu,&nbsp;Ali Behrangi,&nbsp;Suzana J. Camargo,&nbsp;Bithi De,&nbsp;Kuniaki Inoue,&nbsp;Nicolas M. Leitmann-Niimi,&nbsp;Jeffrey D. O. Strong","doi":"10.1029/2024MS004713","DOIUrl":null,"url":null,"abstract":"<p>A neural network (NN) surrogate of the NASA GISS ModelE atmosphere (version E3) is trained on a perturbed parameter ensemble (PPE) spanning 45 physics parameters and 36 outputs. The NN is leveraged in a Markov Chain Monte Carlo (MCMC) Bayesian parameter inference framework to generate a second <i>posterior</i> constrained ensemble coined a “calibrated physics ensemble,” or CPE. The CPE members are characterized by diverse parameter combinations and are, by definition, close to top-of-atmosphere radiative balance, and must broadly agree with numerous hydrologic, energy cycle and radiative forcing metrics simultaneously. Global observations of numerous cloud, environment, and radiation properties (provided by global satellite products) are crucial for CPE generation. The inference framework explicitly accounts for discrepancies (or biases) in satellite products during CPE generation. We demonstrate that product discrepancies strongly impact calibration of important model parameter settings (e.g., convective plume entrainment rates; fall speed for cloud ice). Structural improvements new to E3 are retained across CPE members (e.g., stratocumulus simulation). Notably, the framework improved the simulation of shallow cumulus and Amazon rainfall while not degrading radiation fields, an upgrade that neither default parameters nor Latin Hypercube parameter searching achieved. Analyses of the initial PPE suggested several parameters were unimportant for output variation. However, many “unimportant” parameters were needed for CPE generation, a result that brings to the forefront how parameter importance should be determined in PPEs. From the CPE, two diverse 45-dimensional parameter configurations are retained to generate radiatively-balanced, auto-tuned atmospheres that were used in two E3 submissions to CMIP6.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004713","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning to Generate a GISS ModelE Calibrated Physics Ensemble (CPE)\",\"authors\":\"Gregory S. Elsaesser,&nbsp;Marcus van Lier-Walqui,&nbsp;Qingyuan Yang,&nbsp;Maxwell Kelley,&nbsp;Andrew S. Ackerman,&nbsp;Ann M. Fridlind,&nbsp;Gregory V. Cesana,&nbsp;Gavin A. Schmidt,&nbsp;Jingbo Wu,&nbsp;Ali Behrangi,&nbsp;Suzana J. Camargo,&nbsp;Bithi De,&nbsp;Kuniaki Inoue,&nbsp;Nicolas M. Leitmann-Niimi,&nbsp;Jeffrey D. O. Strong\",\"doi\":\"10.1029/2024MS004713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A neural network (NN) surrogate of the NASA GISS ModelE atmosphere (version E3) is trained on a perturbed parameter ensemble (PPE) spanning 45 physics parameters and 36 outputs. The NN is leveraged in a Markov Chain Monte Carlo (MCMC) Bayesian parameter inference framework to generate a second <i>posterior</i> constrained ensemble coined a “calibrated physics ensemble,” or CPE. The CPE members are characterized by diverse parameter combinations and are, by definition, close to top-of-atmosphere radiative balance, and must broadly agree with numerous hydrologic, energy cycle and radiative forcing metrics simultaneously. Global observations of numerous cloud, environment, and radiation properties (provided by global satellite products) are crucial for CPE generation. The inference framework explicitly accounts for discrepancies (or biases) in satellite products during CPE generation. We demonstrate that product discrepancies strongly impact calibration of important model parameter settings (e.g., convective plume entrainment rates; fall speed for cloud ice). Structural improvements new to E3 are retained across CPE members (e.g., stratocumulus simulation). Notably, the framework improved the simulation of shallow cumulus and Amazon rainfall while not degrading radiation fields, an upgrade that neither default parameters nor Latin Hypercube parameter searching achieved. Analyses of the initial PPE suggested several parameters were unimportant for output variation. However, many “unimportant” parameters were needed for CPE generation, a result that brings to the forefront how parameter importance should be determined in PPEs. From the CPE, two diverse 45-dimensional parameter configurations are retained to generate radiatively-balanced, auto-tuned atmospheres that were used in two E3 submissions to CMIP6.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004713\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004713\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004713","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在一个包含45个物理参数和36个输出的扰动参数集合(PPE)上,对NASA GISS ModelE大气(E3版本)的神经网络(NN)替代品进行了训练。该神经网络在马尔可夫链蒙特卡罗(MCMC)贝叶斯参数推理框架中得到利用,生成第二个后验约束集合,称为“校准物理集合”或CPE。CPE成员具有多种参数组合的特点,并且根据定义,接近于大气顶部的辐射平衡,并且必须同时广泛地符合众多水文、能量循环和辐射强迫指标。大量云、环境和辐射特性的全球观测(由全球卫星产品提供)对CPE的产生至关重要。推理框架明确地解释了在CPE生成过程中卫星产品的差异(或偏差)。我们证明,产品差异强烈影响重要模型参数设置的校准(例如,对流羽流携射率;云冰的下降速度)。CPE成员保留了E3的结构改进(例如,层积云模拟)。值得注意的是,该框架改进了浅积云和亚马逊降雨的模拟,同时没有降低辐射场,这是默认参数和拉丁Hypercube参数搜索都无法实现的升级。对初始PPE的分析表明,有几个参数对输出变化不重要。然而,CPE生成需要许多“不重要”的参数,这一结果将如何确定pe中参数的重要性带到最前沿。CPE保留了两个不同的45维参数配置,以产生辐射平衡,自动调谐的大气,这些大气在两次提交给CMIP6的E3中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using Machine Learning to Generate a GISS ModelE Calibrated Physics Ensemble (CPE)

Using Machine Learning to Generate a GISS ModelE Calibrated Physics Ensemble (CPE)

A neural network (NN) surrogate of the NASA GISS ModelE atmosphere (version E3) is trained on a perturbed parameter ensemble (PPE) spanning 45 physics parameters and 36 outputs. The NN is leveraged in a Markov Chain Monte Carlo (MCMC) Bayesian parameter inference framework to generate a second posterior constrained ensemble coined a “calibrated physics ensemble,” or CPE. The CPE members are characterized by diverse parameter combinations and are, by definition, close to top-of-atmosphere radiative balance, and must broadly agree with numerous hydrologic, energy cycle and radiative forcing metrics simultaneously. Global observations of numerous cloud, environment, and radiation properties (provided by global satellite products) are crucial for CPE generation. The inference framework explicitly accounts for discrepancies (or biases) in satellite products during CPE generation. We demonstrate that product discrepancies strongly impact calibration of important model parameter settings (e.g., convective plume entrainment rates; fall speed for cloud ice). Structural improvements new to E3 are retained across CPE members (e.g., stratocumulus simulation). Notably, the framework improved the simulation of shallow cumulus and Amazon rainfall while not degrading radiation fields, an upgrade that neither default parameters nor Latin Hypercube parameter searching achieved. Analyses of the initial PPE suggested several parameters were unimportant for output variation. However, many “unimportant” parameters were needed for CPE generation, a result that brings to the forefront how parameter importance should be determined in PPEs. From the CPE, two diverse 45-dimensional parameter configurations are retained to generate radiatively-balanced, auto-tuned atmospheres that were used in two E3 submissions to CMIP6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信