提高色牢度,减少对环境的影响:一种环保的Ayous木材染色方法

IF 2.4 3区 农林科学 Q1 FORESTRY
Wensheng Liu, Fanjun Yu, Chengsheng Gui, Yunfang Shen, Zhe Qiu, Zefang Xiao, Tianpeng Zhang, Yanjun Xie
{"title":"提高色牢度,减少对环境的影响:一种环保的Ayous木材染色方法","authors":"Wensheng Liu,&nbsp;Fanjun Yu,&nbsp;Chengsheng Gui,&nbsp;Yunfang Shen,&nbsp;Zhe Qiu,&nbsp;Zefang Xiao,&nbsp;Tianpeng Zhang,&nbsp;Yanjun Xie","doi":"10.1007/s00107-025-02252-w","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, wood dyeing technology plays an important role in its enhancing aesthetics and market competitiveness. However, still facing the dual challenges of insufficient color fastness of dyeing and environmental pollution caused by dye wastes generated during the dyeing process. Herein, an efficient and environmentally friendly dyeing method was proposed to improve color fastness utilizing chemisorption and electrostatic adsorption in low concentration dyeing solution. The chemical modification of Ayous wood using 2,3-epoxypropyltrimethylammonium chloride was carried out by introducing the cationic groups to reduce the dyeing resistance and increase the binding force of dye molecules on the wood. Kinetic and thermodynamic analyses revealed that the adsorption behavior between cation-modified bleached wood (CBW) and acid dyes adheres to the quasi second-order kinetic model (R<sup>2</sup> = 0.98) and Freundlich isothermal model (R<sup>2</sup> = 0.91), suggesting an adsorption process in which chemical adsorption dominated. Therefore, there was a significant increase in color fastness. Compared to the traditional dyeing method, the quantity of dyes consumed in this method can be reduced by 40%, significantly diminishing the environmental load of dyeing waste liquid. This study offers an efficient and environmentally friendly modification strategy for wood dyeing, highlighting a potential of CBW for practical applications.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing color fastness and reducing environmental impact: an eco-friendly dyeing method for Ayous wood\",\"authors\":\"Wensheng Liu,&nbsp;Fanjun Yu,&nbsp;Chengsheng Gui,&nbsp;Yunfang Shen,&nbsp;Zhe Qiu,&nbsp;Zefang Xiao,&nbsp;Tianpeng Zhang,&nbsp;Yanjun Xie\",\"doi\":\"10.1007/s00107-025-02252-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, wood dyeing technology plays an important role in its enhancing aesthetics and market competitiveness. However, still facing the dual challenges of insufficient color fastness of dyeing and environmental pollution caused by dye wastes generated during the dyeing process. Herein, an efficient and environmentally friendly dyeing method was proposed to improve color fastness utilizing chemisorption and electrostatic adsorption in low concentration dyeing solution. The chemical modification of Ayous wood using 2,3-epoxypropyltrimethylammonium chloride was carried out by introducing the cationic groups to reduce the dyeing resistance and increase the binding force of dye molecules on the wood. Kinetic and thermodynamic analyses revealed that the adsorption behavior between cation-modified bleached wood (CBW) and acid dyes adheres to the quasi second-order kinetic model (R<sup>2</sup> = 0.98) and Freundlich isothermal model (R<sup>2</sup> = 0.91), suggesting an adsorption process in which chemical adsorption dominated. Therefore, there was a significant increase in color fastness. Compared to the traditional dyeing method, the quantity of dyes consumed in this method can be reduced by 40%, significantly diminishing the environmental load of dyeing waste liquid. This study offers an efficient and environmentally friendly modification strategy for wood dyeing, highlighting a potential of CBW for practical applications.</p></div>\",\"PeriodicalId\":550,\"journal\":{\"name\":\"European Journal of Wood and Wood Products\",\"volume\":\"83 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Wood and Wood Products\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00107-025-02252-w\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-025-02252-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

目前,木材染色技术在提高木材美观度和市场竞争力方面发挥着重要作用。然而,木材染色仍然面临染色牢度不足和染色过程中产生的染料废料造成环境污染的双重挑战。本文提出了一种高效环保的染色方法,利用低浓度染液中的化学吸附和静电吸附来提高染色牢度。使用 2,3-环氧丙基三甲基氯化铵对阿尤斯木材进行化学改性,通过引入阳离子基团来降低染色阻力并增加染料分子在木材上的结合力。动力学和热力学分析表明,阳离子改性漂白木材(CBW)与酸性染料之间的吸附行为符合准二阶动力学模型(R2 = 0.98)和 Freundlich 等温模型(R2 = 0.91),表明吸附过程中化学吸附占主导地位。因此,色牢度明显提高。与传统染色方法相比,该方法消耗的染料量可减少 40%,大大减轻了染色废液对环境的负荷。这项研究为木材染色提供了一种高效、环保的改性策略,凸显了 CBW 在实际应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing color fastness and reducing environmental impact: an eco-friendly dyeing method for Ayous wood

Currently, wood dyeing technology plays an important role in its enhancing aesthetics and market competitiveness. However, still facing the dual challenges of insufficient color fastness of dyeing and environmental pollution caused by dye wastes generated during the dyeing process. Herein, an efficient and environmentally friendly dyeing method was proposed to improve color fastness utilizing chemisorption and electrostatic adsorption in low concentration dyeing solution. The chemical modification of Ayous wood using 2,3-epoxypropyltrimethylammonium chloride was carried out by introducing the cationic groups to reduce the dyeing resistance and increase the binding force of dye molecules on the wood. Kinetic and thermodynamic analyses revealed that the adsorption behavior between cation-modified bleached wood (CBW) and acid dyes adheres to the quasi second-order kinetic model (R2 = 0.98) and Freundlich isothermal model (R2 = 0.91), suggesting an adsorption process in which chemical adsorption dominated. Therefore, there was a significant increase in color fastness. Compared to the traditional dyeing method, the quantity of dyes consumed in this method can be reduced by 40%, significantly diminishing the environmental load of dyeing waste liquid. This study offers an efficient and environmentally friendly modification strategy for wood dyeing, highlighting a potential of CBW for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Wood and Wood Products
European Journal of Wood and Wood Products 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
3.80%
发文量
124
审稿时长
6.0 months
期刊介绍: European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets. European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信