FDD xml - mimo系统的近场信道估计与稀疏重构

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Ze Wang;Guoping Zhang;Ji Wang;Hongbo Xu
{"title":"FDD xml - mimo系统的近场信道估计与稀疏重构","authors":"Ze Wang;Guoping Zhang;Ji Wang;Hongbo Xu","doi":"10.1109/LCOMM.2025.3542482","DOIUrl":null,"url":null,"abstract":"The exponential growth of antennas in extremely large-scale MIMO (XL-MIMO) systems can lead to substantial overhead in pilot transmission for channel estimation and feedback, resulting in a decline in spectrum efficiency. This letter proposes a deep learning (DL)-based framework tailored for frequency division duplex (FDD) XL-MIMO, focusing on specialized neural networks for channel estimation and sparse reconstruction. For channel estimation, we design frequency-aware pilots by using dense layers according to the signal model and develop an attention mechanism-based residual channel estimation (A-RCE) network, which leverages inherent correlations within the channel matrix across subcarriers and antennas to improve estimation accuracy. To reduce channel state information (CSI) feedback overhead, we introduce a trainable fast iterative shrinkage thresholding (TFIST) network that leverages the polar-domain sparsity of the near-field channel to achieve a low-dimensional sparse representation. The simulation results validate the effectiveness of our proposed scheme, which can significantly enhance the estimation performance compared to other benchmark schemes.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 4","pages":"744-748"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Field Channel Estimation and Sparse Reconstruction for FDD XL-MIMO Systems\",\"authors\":\"Ze Wang;Guoping Zhang;Ji Wang;Hongbo Xu\",\"doi\":\"10.1109/LCOMM.2025.3542482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential growth of antennas in extremely large-scale MIMO (XL-MIMO) systems can lead to substantial overhead in pilot transmission for channel estimation and feedback, resulting in a decline in spectrum efficiency. This letter proposes a deep learning (DL)-based framework tailored for frequency division duplex (FDD) XL-MIMO, focusing on specialized neural networks for channel estimation and sparse reconstruction. For channel estimation, we design frequency-aware pilots by using dense layers according to the signal model and develop an attention mechanism-based residual channel estimation (A-RCE) network, which leverages inherent correlations within the channel matrix across subcarriers and antennas to improve estimation accuracy. To reduce channel state information (CSI) feedback overhead, we introduce a trainable fast iterative shrinkage thresholding (TFIST) network that leverages the polar-domain sparsity of the near-field channel to achieve a low-dimensional sparse representation. The simulation results validate the effectiveness of our proposed scheme, which can significantly enhance the estimation performance compared to other benchmark schemes.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 4\",\"pages\":\"744-748\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891049/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891049/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在超大规模MIMO (XL-MIMO)系统中,天线的指数增长会导致导频传输中信道估计和反馈的大量开销,从而导致频谱效率的下降。这封信提出了一个基于深度学习(DL)的框架,为频分双工(FDD) xml - mimo量身定制,专注于用于信道估计和稀疏重建的专用神经网络。对于信道估计,我们根据信号模型使用密集层设计频率感知导频,并开发了基于注意机制的残差信道估计(A-RCE)网络,该网络利用跨子载波和天线的信道矩阵内的固有相关性来提高估计精度。为了减少信道状态信息(CSI)反馈开销,我们引入了一个可训练的快速迭代收缩阈值(TFIST)网络,该网络利用近场信道的极域稀疏性来实现低维稀疏表示。仿真结果验证了该方案的有效性,与其他基准方案相比,该方案可以显著提高估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-Field Channel Estimation and Sparse Reconstruction for FDD XL-MIMO Systems
The exponential growth of antennas in extremely large-scale MIMO (XL-MIMO) systems can lead to substantial overhead in pilot transmission for channel estimation and feedback, resulting in a decline in spectrum efficiency. This letter proposes a deep learning (DL)-based framework tailored for frequency division duplex (FDD) XL-MIMO, focusing on specialized neural networks for channel estimation and sparse reconstruction. For channel estimation, we design frequency-aware pilots by using dense layers according to the signal model and develop an attention mechanism-based residual channel estimation (A-RCE) network, which leverages inherent correlations within the channel matrix across subcarriers and antennas to improve estimation accuracy. To reduce channel state information (CSI) feedback overhead, we introduce a trainable fast iterative shrinkage thresholding (TFIST) network that leverages the polar-domain sparsity of the near-field channel to achieve a low-dimensional sparse representation. The simulation results validate the effectiveness of our proposed scheme, which can significantly enhance the estimation performance compared to other benchmark schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信