IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Ahmed El Alaoui, Andrea Montanari, Mark Sellke
{"title":"Shattering in Pure Spherical Spin Glasses","authors":"Ahmed El Alaoui,&nbsp;Andrea Montanari,&nbsp;Mark Sellke","doi":"10.1007/s00220-025-05243-3","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the existence of a shattered phase within the replica-symmetric phase of the pure spherical <i>p</i>-spin models for <i>p</i> sufficiently large. In this phase, we construct a decomposition of the sphere into well-separated small clusters, each of which has exponentially small Gibbs mass, yet which together carry all but an exponentially small fraction of the Gibbs mass. We achieve this via quantitative estimates on the derivative of the Franz–Parisi potential, which measures the Gibbs mass profile around a typical sample. Corollaries on dynamics are derived, in particular, we show the two-times correlation function of stationary Langevin dynamics must have an exponentially long plateau. We further show that shattering implies disorder chaos for the Gibbs measure in the optimal transport sense; this is known to imply failure of sampling algorithms which are stable under perturbation in the same metric.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05243-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在p足够大的情况下,纯球形p-自旋模型的复制对称阶段内存在一个破碎阶段。在这一阶段,我们把球体分解成一个个分离得很好的小球团,每个球团的吉布斯质量都是指数级的小,但它们共同承载了所有的吉布斯质量,只有很小一部分是指数级的。我们通过对弗朗兹-帕里西势导数的定量估计来实现这一点,该导数测量了典型样本周围的吉布斯质量曲线。我们推导出了动力学上的推论,特别是,我们证明了静止朗格文动力学的两次相关函数必须有一个指数长的高原。我们进一步证明,破碎意味着最优传输意义上的吉布斯量度的无序混乱;众所周知,这意味着在相同度量的扰动下稳定的采样算法的失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shattering in Pure Spherical Spin Glasses

We prove the existence of a shattered phase within the replica-symmetric phase of the pure spherical p-spin models for p sufficiently large. In this phase, we construct a decomposition of the sphere into well-separated small clusters, each of which has exponentially small Gibbs mass, yet which together carry all but an exponentially small fraction of the Gibbs mass. We achieve this via quantitative estimates on the derivative of the Franz–Parisi potential, which measures the Gibbs mass profile around a typical sample. Corollaries on dynamics are derived, in particular, we show the two-times correlation function of stationary Langevin dynamics must have an exponentially long plateau. We further show that shattering implies disorder chaos for the Gibbs measure in the optimal transport sense; this is known to imply failure of sampling algorithms which are stable under perturbation in the same metric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信