Al-6101合金UFG试样的真断裂应力

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
D. V. Gunderov, S. D. Gunderova, D. K. Magomedova
{"title":"Al-6101合金UFG试样的真断裂应力","authors":"D. V. Gunderov,&nbsp;S. D. Gunderova,&nbsp;D. K. Magomedova","doi":"10.1134/S1067821225600103","DOIUrl":null,"url":null,"abstract":"<p>The results of the study on determining the true fracture stresses of cylindrical samples with an ultrafine-grained structure of alloy 6001 obtained by the ECAP-C method are presented. These results are compared with similar data for a coarse-grained structure of the same alloy produced through standard heat treatment. This work was conducted to accurately describe the mechanical behavior of the material in both the coarse-grained (CG) and ultrafine-grained (UFG) states. The analysis revealed that the true strain to failure in the artificial aging (AA) state and the UFG state of alloy 6101, taking measurement errors into account, is the same. However, the true fracture stress of samples with a UFG structure is significantly higher than that of samples with an AA structure. The increase in strength and yield point resulting from ECAP-C processing is determined by the reduction in grain size according to the Hall–Petch relationship. An explanation for the increase in true fracture stress of samples during grain refinement is proposed on the basis of a compilation of the Hall–Petch relationship and the Zener–Stroh model, which involves a criterion for pore formation in particles when the stresses at the matrix/particle interface reach critical values.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"65 4","pages":"215 - 220"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"True Fracture Stress of UFG Samples of Al-6101 Alloy\",\"authors\":\"D. V. Gunderov,&nbsp;S. D. Gunderova,&nbsp;D. K. Magomedova\",\"doi\":\"10.1134/S1067821225600103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of the study on determining the true fracture stresses of cylindrical samples with an ultrafine-grained structure of alloy 6001 obtained by the ECAP-C method are presented. These results are compared with similar data for a coarse-grained structure of the same alloy produced through standard heat treatment. This work was conducted to accurately describe the mechanical behavior of the material in both the coarse-grained (CG) and ultrafine-grained (UFG) states. The analysis revealed that the true strain to failure in the artificial aging (AA) state and the UFG state of alloy 6101, taking measurement errors into account, is the same. However, the true fracture stress of samples with a UFG structure is significantly higher than that of samples with an AA structure. The increase in strength and yield point resulting from ECAP-C processing is determined by the reduction in grain size according to the Hall–Petch relationship. An explanation for the increase in true fracture stress of samples during grain refinement is proposed on the basis of a compilation of the Hall–Petch relationship and the Zener–Stroh model, which involves a criterion for pore formation in particles when the stresses at the matrix/particle interface reach critical values.</p>\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":\"65 4\",\"pages\":\"215 - 220\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1067821225600103\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821225600103","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了通过 ECAP-C 方法确定合金 6001 超细晶粒结构圆柱形样品真实断裂应力的研究结果。这些结果与通过标准热处理生产的同种合金粗晶粒结构的类似数据进行了比较。这项工作旨在准确描述材料在粗晶粒(CG)和超细晶粒(UFG)状态下的机械行为。分析表明,考虑到测量误差,合金 6101 在人工老化 (AA) 状态和 UFG 状态下的真实破坏应变是相同的。但是,具有 UFG 结构的样品的真实断裂应力明显高于具有 AA 结构的样品。根据霍尔-佩奇(Hall-Petch)关系,ECAP-C 加工过程中晶粒尺寸的减小决定了强度和屈服点的提高。根据霍尔-佩奇关系和齐纳-斯特罗模型的汇编,提出了样品在晶粒细化过程中真实断裂应力增加的解释,其中涉及当基体/颗粒界面应力达到临界值时颗粒中孔隙形成的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
True Fracture Stress of UFG Samples of Al-6101 Alloy

The results of the study on determining the true fracture stresses of cylindrical samples with an ultrafine-grained structure of alloy 6001 obtained by the ECAP-C method are presented. These results are compared with similar data for a coarse-grained structure of the same alloy produced through standard heat treatment. This work was conducted to accurately describe the mechanical behavior of the material in both the coarse-grained (CG) and ultrafine-grained (UFG) states. The analysis revealed that the true strain to failure in the artificial aging (AA) state and the UFG state of alloy 6101, taking measurement errors into account, is the same. However, the true fracture stress of samples with a UFG structure is significantly higher than that of samples with an AA structure. The increase in strength and yield point resulting from ECAP-C processing is determined by the reduction in grain size according to the Hall–Petch relationship. An explanation for the increase in true fracture stress of samples during grain refinement is proposed on the basis of a compilation of the Hall–Petch relationship and the Zener–Stroh model, which involves a criterion for pore formation in particles when the stresses at the matrix/particle interface reach critical values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信