基于 GCN-LSTM 的恐怖袭击时空预测

IF 3.7 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Yingjie Du , Ning Ding , Hongyu Lv
{"title":"基于 GCN-LSTM 的恐怖袭击时空预测","authors":"Yingjie Du ,&nbsp;Ning Ding ,&nbsp;Hongyu Lv","doi":"10.1016/j.jnlssr.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>Terrorist attacks represent a significant threat to national order, social stability, and economic security. Accurate prediction of such attacks is a critical task for casualty reduction, enhanced decision-making, and optimal resource distribution in counter-terrorism efforts. This paper introduces an innovative spatio-temporal fusion framework that combines graph convolutional network (GCN) with long short-term memory (LSTM) models. By capturing and merging spatio-temporal features from relevant events, the proposed GCN-LSTM model achieves remarkable accuracy in predicting terrorist attacks. The experimental results demonstrate outstanding performance, with the model attaining minimal RMSE and MAE values of 0.037 and 0.031, respectively, surpassing all baseline models (LSTM, GCN, and CNN-LSTM-Transformer). Through its effective interpretation of complex spatio-temporal patterns underlying terrorist attacks, our model substantially enhances the predictive accuracy across diverse time horizons. These findings carry crucial implications for enhancing counter-terrorism strategies.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"6 2","pages":"Pages 186-195"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal prediction of terrorist attacks based on GCN-LSTM\",\"authors\":\"Yingjie Du ,&nbsp;Ning Ding ,&nbsp;Hongyu Lv\",\"doi\":\"10.1016/j.jnlssr.2025.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Terrorist attacks represent a significant threat to national order, social stability, and economic security. Accurate prediction of such attacks is a critical task for casualty reduction, enhanced decision-making, and optimal resource distribution in counter-terrorism efforts. This paper introduces an innovative spatio-temporal fusion framework that combines graph convolutional network (GCN) with long short-term memory (LSTM) models. By capturing and merging spatio-temporal features from relevant events, the proposed GCN-LSTM model achieves remarkable accuracy in predicting terrorist attacks. The experimental results demonstrate outstanding performance, with the model attaining minimal RMSE and MAE values of 0.037 and 0.031, respectively, surpassing all baseline models (LSTM, GCN, and CNN-LSTM-Transformer). Through its effective interpretation of complex spatio-temporal patterns underlying terrorist attacks, our model substantially enhances the predictive accuracy across diverse time horizons. These findings carry crucial implications for enhancing counter-terrorism strategies.</div></div>\",\"PeriodicalId\":62710,\"journal\":{\"name\":\"安全科学与韧性(英文)\",\"volume\":\"6 2\",\"pages\":\"Pages 186-195\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"安全科学与韧性(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666449625000301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"安全科学与韧性(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666449625000301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

恐怖袭击是对国家秩序、社会稳定和经济安全的重大威胁。准确预测此类袭击是反恐工作中减少伤亡、加强决策和优化资源分配的关键任务。本文介绍了一种将图卷积网络(GCN)与长短期记忆(LSTM)模型相结合的创新时空融合框架。通过捕获和融合相关事件的时空特征,所提出的GCN-LSTM模型在预测恐怖袭击方面取得了显著的准确性。实验结果表明,该模型的最小RMSE和MAE值分别为0.037和0.031,优于所有基线模型(LSTM、GCN和CNN-LSTM-Transformer)。通过对恐怖袭击背后复杂时空模式的有效解释,我们的模型大大提高了不同时间范围内的预测准确性。这些发现对加强反恐战略具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal prediction of terrorist attacks based on GCN-LSTM
Terrorist attacks represent a significant threat to national order, social stability, and economic security. Accurate prediction of such attacks is a critical task for casualty reduction, enhanced decision-making, and optimal resource distribution in counter-terrorism efforts. This paper introduces an innovative spatio-temporal fusion framework that combines graph convolutional network (GCN) with long short-term memory (LSTM) models. By capturing and merging spatio-temporal features from relevant events, the proposed GCN-LSTM model achieves remarkable accuracy in predicting terrorist attacks. The experimental results demonstrate outstanding performance, with the model attaining minimal RMSE and MAE values of 0.037 and 0.031, respectively, surpassing all baseline models (LSTM, GCN, and CNN-LSTM-Transformer). Through its effective interpretation of complex spatio-temporal patterns underlying terrorist attacks, our model substantially enhances the predictive accuracy across diverse time horizons. These findings carry crucial implications for enhancing counter-terrorism strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
安全科学与韧性(英文)
安全科学与韧性(英文) Management Science and Operations Research, Safety, Risk, Reliability and Quality, Safety Research
CiteScore
8.70
自引率
0.00%
发文量
0
审稿时长
72 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信