{"title":"车轮网络条件故障的容错强门格连通性","authors":"Shiying Wang , Lina Zhao , Su Wang","doi":"10.1016/j.dam.2025.04.019","DOIUrl":null,"url":null,"abstract":"<div><div>An interconnection network is usually modeled as a graph, where vertex and edge correspond the processor and the link between two distinct processors, respectively. Connectivity is an important metric for the fault tolerance in interconnection networks. A connected graph <span><math><mi>G</mi></math></span> is called strongly Menger connected if each pair of vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> are connected by <span><math><mrow><mo>min</mo><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> vertex-disjoint paths in <span><math><mi>G</mi></math></span>. A graph <span><math><mi>G</mi></math></span> is called <span><math><mi>m</mi></math></span>-fault-tolerant strongly Menger (<span><math><mi>m</mi></math></span>-FTSM for short) connected if <span><math><mrow><mi>G</mi><mo>−</mo><mi>F</mi></mrow></math></span> remains strongly Menger connected for any <span><math><mrow><mi>F</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>≤</mo><mi>m</mi></mrow></math></span>. A graph <span><math><mi>G</mi></math></span> is called <span><math><mi>m</mi></math></span>-conditional fault-tolerant strongly Menger (<span><math><mi>m</mi></math></span>-CFTSM for short) connected if <span><math><mrow><mi>G</mi><mo>−</mo><mi>F</mi></mrow></math></span> remains strongly Menger connected for any <span><math><mrow><mi>F</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>≤</mo><mi>m</mi></mrow></math></span> and <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>F</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn></mrow></math></span>. In this paper, we show that <span><math><mi>n</mi></math></span>-dimensional wheel network <span><math><mrow><mi>C</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is <span><math><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn><mo>)</mo></mrow></math></span>-FTSM connected for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>5</mn><mo>)</mo></mrow></math></span>-fault-tolerant one-to-many strongly Menger connected for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, and <span><math><mrow><mo>(</mo><mn>4</mn><mi>n</mi><mo>−</mo><mn>10</mn><mo>)</mo></mrow></math></span>-CFTSM connected for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow></math></span>. Moreover, the bounds <span><math><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn><mo>)</mo></mrow></math></span>, <span><math><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>5</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mn>4</mn><mi>n</mi><mo>−</mo><mn>10</mn><mo>)</mo></mrow></math></span> are sharps.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 115-126"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault-tolerant strong Menger connectivity with conditional faults on wheel networks\",\"authors\":\"Shiying Wang , Lina Zhao , Su Wang\",\"doi\":\"10.1016/j.dam.2025.04.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An interconnection network is usually modeled as a graph, where vertex and edge correspond the processor and the link between two distinct processors, respectively. Connectivity is an important metric for the fault tolerance in interconnection networks. A connected graph <span><math><mi>G</mi></math></span> is called strongly Menger connected if each pair of vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> are connected by <span><math><mrow><mo>min</mo><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> vertex-disjoint paths in <span><math><mi>G</mi></math></span>. A graph <span><math><mi>G</mi></math></span> is called <span><math><mi>m</mi></math></span>-fault-tolerant strongly Menger (<span><math><mi>m</mi></math></span>-FTSM for short) connected if <span><math><mrow><mi>G</mi><mo>−</mo><mi>F</mi></mrow></math></span> remains strongly Menger connected for any <span><math><mrow><mi>F</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>≤</mo><mi>m</mi></mrow></math></span>. A graph <span><math><mi>G</mi></math></span> is called <span><math><mi>m</mi></math></span>-conditional fault-tolerant strongly Menger (<span><math><mi>m</mi></math></span>-CFTSM for short) connected if <span><math><mrow><mi>G</mi><mo>−</mo><mi>F</mi></mrow></math></span> remains strongly Menger connected for any <span><math><mrow><mi>F</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>≤</mo><mi>m</mi></mrow></math></span> and <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>F</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn></mrow></math></span>. In this paper, we show that <span><math><mi>n</mi></math></span>-dimensional wheel network <span><math><mrow><mi>C</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is <span><math><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn><mo>)</mo></mrow></math></span>-FTSM connected for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>5</mn><mo>)</mo></mrow></math></span>-fault-tolerant one-to-many strongly Menger connected for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, and <span><math><mrow><mo>(</mo><mn>4</mn><mi>n</mi><mo>−</mo><mn>10</mn><mo>)</mo></mrow></math></span>-CFTSM connected for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow></math></span>. Moreover, the bounds <span><math><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn><mo>)</mo></mrow></math></span>, <span><math><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>5</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mn>4</mn><mi>n</mi><mo>−</mo><mn>10</mn><mo>)</mo></mrow></math></span> are sharps.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"371 \",\"pages\":\"Pages 115-126\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001854\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001854","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Fault-tolerant strong Menger connectivity with conditional faults on wheel networks
An interconnection network is usually modeled as a graph, where vertex and edge correspond the processor and the link between two distinct processors, respectively. Connectivity is an important metric for the fault tolerance in interconnection networks. A connected graph is called strongly Menger connected if each pair of vertices and are connected by vertex-disjoint paths in . A graph is called -fault-tolerant strongly Menger (-FTSM for short) connected if remains strongly Menger connected for any with . A graph is called -conditional fault-tolerant strongly Menger (-CFTSM for short) connected if remains strongly Menger connected for any with and . In this paper, we show that -dimensional wheel network is -FTSM connected for , -fault-tolerant one-to-many strongly Menger connected for , and -CFTSM connected for . Moreover, the bounds , and are sharps.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.