μ-b族Camassa-Holm方程中周期峰波的谱不稳定性

IF 2.4 2区 数学 Q1 MATHEMATICS
Haijing Song , Ying Fu , Hao Wang
{"title":"μ-b族Camassa-Holm方程中周期峰波的谱不稳定性","authors":"Haijing Song ,&nbsp;Ying Fu ,&nbsp;Hao Wang","doi":"10.1016/j.jde.2025.113311","DOIUrl":null,"url":null,"abstract":"<div><div>Considered herein is a <em>μ</em>-version <em>b</em>-family of the Camassa-Holm equations on the circle. First, we define a linearized operator associated with these equations in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo></math></span> and extend its domain to the larger space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. Then we show that the periodic peaked waves of these equations are spectrally unstable in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo></math></span> for <span><math><mi>b</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>. Finally, by using the method of characteristic, the time evolution of the linearized system is obtained, which is related to the spectral properties of the linearized operator in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. We emphasize that this is the first result which proves the spectral instability in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mrow><mi>S</mi></mrow><mo>)</mo></math></span> of peakons for the <em>μ</em>-version equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"434 ","pages":"Article 113311"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral instability of periodic peaked waves in the μ-b-family of Camassa-Holm equations\",\"authors\":\"Haijing Song ,&nbsp;Ying Fu ,&nbsp;Hao Wang\",\"doi\":\"10.1016/j.jde.2025.113311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Considered herein is a <em>μ</em>-version <em>b</em>-family of the Camassa-Holm equations on the circle. First, we define a linearized operator associated with these equations in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo></math></span> and extend its domain to the larger space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. Then we show that the periodic peaked waves of these equations are spectrally unstable in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo></math></span> for <span><math><mi>b</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>. Finally, by using the method of characteristic, the time evolution of the linearized system is obtained, which is related to the spectral properties of the linearized operator in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. We emphasize that this is the first result which proves the spectral instability in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mrow><mi>S</mi></mrow><mo>)</mo></math></span> of peakons for the <em>μ</em>-version equations.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"434 \",\"pages\":\"Article 113311\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625003389\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003389","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这里考虑的是圆上Camassa-Holm方程的μ-版本b族。首先,我们在H1(S)∩W1,∞(S)中定义一个与这些方程相关的线性化算子,并将其域扩展到更大的空间L2(S)。然后我们证明了当b=2,3时,这些方程的周期峰值波在L2(S)中是谱不稳定的。最后,利用特征化方法,得到了线性化系统的时间演化,这与线性化算子在L2(S)中的频谱特性有关。我们强调,这是第一个证明μ-版本方程的峰在L2(S)中的谱不稳定性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral instability of periodic peaked waves in the μ-b-family of Camassa-Holm equations
Considered herein is a μ-version b-family of the Camassa-Holm equations on the circle. First, we define a linearized operator associated with these equations in H1(S)W1,(S) and extend its domain to the larger space L2(S). Then we show that the periodic peaked waves of these equations are spectrally unstable in L2(S) for b=2,3. Finally, by using the method of characteristic, the time evolution of the linearized system is obtained, which is related to the spectral properties of the linearized operator in L2(S). We emphasize that this is the first result which proves the spectral instability in L2(S) of peakons for the μ-version equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信