Zhi-Cheng Ye , Jia-Yuan Liu , Chao-Jung Chen , Yen-Yi Chen , Wen-Chun Li , Mine-Yine Liu
{"title":"用胶束电动色谱法研究人载脂蛋白与氧化1-棕榈酰-2-花生四烯酰- n-甘油-3-磷酸胆碱的结合产物","authors":"Zhi-Cheng Ye , Jia-Yuan Liu , Chao-Jung Chen , Yen-Yi Chen , Wen-Chun Li , Mine-Yine Liu","doi":"10.1016/j.chroma.2025.465898","DOIUrl":null,"url":null,"abstract":"<div><div>A micellar electrokinetic chromatography (MEKC) method has been developed to investigate the binding products between human apolipoproteins (Apos) and oxidized 1-palmitoyl-2-arachidonoyl-sn‑glycero-3-phosphocholine (ox-PAPC) products. The optimal MEKC separation buffer was composed of a solution mixture of 10 mM sodium phosphate, 50 mM bile salts (50 % sodium cholate and 50 % sodium deoxycholate), 30 % (v/v)1-propanol and 70 % (v/v) water, pH 7.4. The optimal MEKC sample buffer was composed of 70 % (v/v) PBS buffer and 30 % (v/v) MeOH. The selected separation voltage was 20 kV, and the capillary temperature was 25℃. The MEKC profiles of ox-PAPC products showed good separations and repeatability. The MEKC profiles of apos and their binding products also showed good repeatability.</div><div>For the analysis of native PAPC (n-PAPC), the method is linear in the range of 0.00–6.00 mg/mL with a correlation coefficient 0.9984. The concentration limit of detection (LOD) is 0.29 mg/mL. The concentration limit of quantitation (LOQ) is 0.98 mg/mL.</div><div>The binding reactions between several important human apolipoproteins (Apos A-I, A-II, C-I, C-II, C-III and E) and native PAPC, ox-PAPC products have been investigated. The concentrations of Apos and ox-PAPC products for binding reactions have been examined. The optimal binding buffer selected was 70 % (v/v) PBS buffer and 30 % (v/v) MeOH. The binding reaction was performed at 37 ℃ for 3 hr.</div><div>The results indicated that ox-PAPC products bound to Apos A-I, A-II, C-I, and E more strongly than n-PAPC. However, both ox-PAPC products and n-PAPC did not bind to Apos C-II and C-III strongly. The results suggested pro-inflammatory properties of Apos A-I, A-II, C-I, and E, and implied one of the molecular mechanisms resulting in dysfunctional HDL particles. This study also demonstrated the feasibility of investigating the binding reactions between human apolipoproteins and ox-PAPC products by MEKC.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1751 ","pages":"Article 465898"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the binding products between human apolipoproteins and oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine by micellar electrokinetic chromatography\",\"authors\":\"Zhi-Cheng Ye , Jia-Yuan Liu , Chao-Jung Chen , Yen-Yi Chen , Wen-Chun Li , Mine-Yine Liu\",\"doi\":\"10.1016/j.chroma.2025.465898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A micellar electrokinetic chromatography (MEKC) method has been developed to investigate the binding products between human apolipoproteins (Apos) and oxidized 1-palmitoyl-2-arachidonoyl-sn‑glycero-3-phosphocholine (ox-PAPC) products. The optimal MEKC separation buffer was composed of a solution mixture of 10 mM sodium phosphate, 50 mM bile salts (50 % sodium cholate and 50 % sodium deoxycholate), 30 % (v/v)1-propanol and 70 % (v/v) water, pH 7.4. The optimal MEKC sample buffer was composed of 70 % (v/v) PBS buffer and 30 % (v/v) MeOH. The selected separation voltage was 20 kV, and the capillary temperature was 25℃. The MEKC profiles of ox-PAPC products showed good separations and repeatability. The MEKC profiles of apos and their binding products also showed good repeatability.</div><div>For the analysis of native PAPC (n-PAPC), the method is linear in the range of 0.00–6.00 mg/mL with a correlation coefficient 0.9984. The concentration limit of detection (LOD) is 0.29 mg/mL. The concentration limit of quantitation (LOQ) is 0.98 mg/mL.</div><div>The binding reactions between several important human apolipoproteins (Apos A-I, A-II, C-I, C-II, C-III and E) and native PAPC, ox-PAPC products have been investigated. The concentrations of Apos and ox-PAPC products for binding reactions have been examined. The optimal binding buffer selected was 70 % (v/v) PBS buffer and 30 % (v/v) MeOH. The binding reaction was performed at 37 ℃ for 3 hr.</div><div>The results indicated that ox-PAPC products bound to Apos A-I, A-II, C-I, and E more strongly than n-PAPC. However, both ox-PAPC products and n-PAPC did not bind to Apos C-II and C-III strongly. The results suggested pro-inflammatory properties of Apos A-I, A-II, C-I, and E, and implied one of the molecular mechanisms resulting in dysfunctional HDL particles. This study also demonstrated the feasibility of investigating the binding reactions between human apolipoproteins and ox-PAPC products by MEKC.</div></div>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":\"1751 \",\"pages\":\"Article 465898\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021967325002468\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325002468","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Investigating the binding products between human apolipoproteins and oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine by micellar electrokinetic chromatography
A micellar electrokinetic chromatography (MEKC) method has been developed to investigate the binding products between human apolipoproteins (Apos) and oxidized 1-palmitoyl-2-arachidonoyl-sn‑glycero-3-phosphocholine (ox-PAPC) products. The optimal MEKC separation buffer was composed of a solution mixture of 10 mM sodium phosphate, 50 mM bile salts (50 % sodium cholate and 50 % sodium deoxycholate), 30 % (v/v)1-propanol and 70 % (v/v) water, pH 7.4. The optimal MEKC sample buffer was composed of 70 % (v/v) PBS buffer and 30 % (v/v) MeOH. The selected separation voltage was 20 kV, and the capillary temperature was 25℃. The MEKC profiles of ox-PAPC products showed good separations and repeatability. The MEKC profiles of apos and their binding products also showed good repeatability.
For the analysis of native PAPC (n-PAPC), the method is linear in the range of 0.00–6.00 mg/mL with a correlation coefficient 0.9984. The concentration limit of detection (LOD) is 0.29 mg/mL. The concentration limit of quantitation (LOQ) is 0.98 mg/mL.
The binding reactions between several important human apolipoproteins (Apos A-I, A-II, C-I, C-II, C-III and E) and native PAPC, ox-PAPC products have been investigated. The concentrations of Apos and ox-PAPC products for binding reactions have been examined. The optimal binding buffer selected was 70 % (v/v) PBS buffer and 30 % (v/v) MeOH. The binding reaction was performed at 37 ℃ for 3 hr.
The results indicated that ox-PAPC products bound to Apos A-I, A-II, C-I, and E more strongly than n-PAPC. However, both ox-PAPC products and n-PAPC did not bind to Apos C-II and C-III strongly. The results suggested pro-inflammatory properties of Apos A-I, A-II, C-I, and E, and implied one of the molecular mechanisms resulting in dysfunctional HDL particles. This study also demonstrated the feasibility of investigating the binding reactions between human apolipoproteins and ox-PAPC products by MEKC.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.