揭示了纳米级过氧化氢在含氧水溶液中的双重反应性

IF 8.7 1区 化学 Q1 ACOUSTICS
Julien Margate , Matthieu Virot , Thomas Dumas , Simon Bayle , Denis Menut , Laura Bonato , Emilie Broussard , Fanny Molière , Charles Hours , Laurent Venault , Sergey I. Nikitenko
{"title":"揭示了纳米级过氧化氢在含氧水溶液中的双重反应性","authors":"Julien Margate ,&nbsp;Matthieu Virot ,&nbsp;Thomas Dumas ,&nbsp;Simon Bayle ,&nbsp;Denis Menut ,&nbsp;Laura Bonato ,&nbsp;Emilie Broussard ,&nbsp;Fanny Molière ,&nbsp;Charles Hours ,&nbsp;Laurent Venault ,&nbsp;Sergey I. Nikitenko","doi":"10.1016/j.ultsonch.2025.107346","DOIUrl":null,"url":null,"abstract":"<div><div>While bulk PuO<sub>2</sub> is known to be strongly resistant to dissolution, even under ultrasonic irradiation, this study demonstrates that nanometric PuO<sub>2</sub> samples can exhibit enhanced reactivity when sonicated under an Ar/(20 %)O<sub>2</sub> atmosphere. Sonication of powdered PuO<sub>2</sub> nanoparticles (∼5 nm) in pure water was found to be ineffective. In contrast, colloidal PuO<sub>2</sub> nanoparticles (∼3 nm) prepared via hydrolysis exhibited markedly different behavior, leading to the accumulation of Pu(VI), with sonochemically-generated H<sub>2</sub>O<sub>2</sub> playing a crucial role in the process. Further investigations identified an intermediate species implicated in the dissolution process, agreeing with a recently described Pu(IV) peroxide compound. Despite the chemical similarity of the PuO<sub>2</sub> nanoparticles, this study highlights their dual reactivity under conditions favoring H<sub>2</sub>O<sub>2</sub> formation highlighting an important role of the material’s preparation method. Beyond underscoring the critical role of H<sub>2</sub>O<sub>2</sub> in the reactivity of PuO<sub>2</sub> nanoparticles, this study also evidences a potential pathway for their transformation under environmental conditions where radiolysis can generate similar chemical environments.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"117 ","pages":"Article 107346"},"PeriodicalIF":8.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the dual reactivity of nanoscaled PuO2 sonicated in oxygenated aqueous solutions\",\"authors\":\"Julien Margate ,&nbsp;Matthieu Virot ,&nbsp;Thomas Dumas ,&nbsp;Simon Bayle ,&nbsp;Denis Menut ,&nbsp;Laura Bonato ,&nbsp;Emilie Broussard ,&nbsp;Fanny Molière ,&nbsp;Charles Hours ,&nbsp;Laurent Venault ,&nbsp;Sergey I. Nikitenko\",\"doi\":\"10.1016/j.ultsonch.2025.107346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While bulk PuO<sub>2</sub> is known to be strongly resistant to dissolution, even under ultrasonic irradiation, this study demonstrates that nanometric PuO<sub>2</sub> samples can exhibit enhanced reactivity when sonicated under an Ar/(20 %)O<sub>2</sub> atmosphere. Sonication of powdered PuO<sub>2</sub> nanoparticles (∼5 nm) in pure water was found to be ineffective. In contrast, colloidal PuO<sub>2</sub> nanoparticles (∼3 nm) prepared via hydrolysis exhibited markedly different behavior, leading to the accumulation of Pu(VI), with sonochemically-generated H<sub>2</sub>O<sub>2</sub> playing a crucial role in the process. Further investigations identified an intermediate species implicated in the dissolution process, agreeing with a recently described Pu(IV) peroxide compound. Despite the chemical similarity of the PuO<sub>2</sub> nanoparticles, this study highlights their dual reactivity under conditions favoring H<sub>2</sub>O<sub>2</sub> formation highlighting an important role of the material’s preparation method. Beyond underscoring the critical role of H<sub>2</sub>O<sub>2</sub> in the reactivity of PuO<sub>2</sub> nanoparticles, this study also evidences a potential pathway for their transformation under environmental conditions where radiolysis can generate similar chemical environments.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"117 \",\"pages\":\"Article 107346\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725001257\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725001257","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

虽然已知大块PuO2即使在超声波照射下也具有很强的抗溶解性,但该研究表明,纳米级PuO2样品在Ar/(20%)O2气氛下超声处理时可以表现出增强的反应性。在纯水中对粉末PuO2纳米颗粒(~ 5 nm)进行超声处理是无效的。相反,通过水解制备的胶体PuO2纳米颗粒(~ 3 nm)表现出明显不同的行为,导致Pu(VI)的积累,声化学生成的H2O2在这一过程中起着至关重要的作用。进一步的研究发现了一种与溶解过程有关的中间物质,与最近描述的过氧化物Pu(IV)化合物一致。尽管PuO2纳米颗粒具有化学相似性,但本研究强调了它们在有利于H2O2形成的条件下的双重反应性,这突出了材料制备方法的重要作用。除了强调H2O2在PuO2纳米颗粒反应性中的关键作用外,本研究还证明了它们在环境条件下转化的潜在途径,其中辐射分解可以产生类似的化学环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the dual reactivity of nanoscaled PuO2 sonicated in oxygenated aqueous solutions
While bulk PuO2 is known to be strongly resistant to dissolution, even under ultrasonic irradiation, this study demonstrates that nanometric PuO2 samples can exhibit enhanced reactivity when sonicated under an Ar/(20 %)O2 atmosphere. Sonication of powdered PuO2 nanoparticles (∼5 nm) in pure water was found to be ineffective. In contrast, colloidal PuO2 nanoparticles (∼3 nm) prepared via hydrolysis exhibited markedly different behavior, leading to the accumulation of Pu(VI), with sonochemically-generated H2O2 playing a crucial role in the process. Further investigations identified an intermediate species implicated in the dissolution process, agreeing with a recently described Pu(IV) peroxide compound. Despite the chemical similarity of the PuO2 nanoparticles, this study highlights their dual reactivity under conditions favoring H2O2 formation highlighting an important role of the material’s preparation method. Beyond underscoring the critical role of H2O2 in the reactivity of PuO2 nanoparticles, this study also evidences a potential pathway for their transformation under environmental conditions where radiolysis can generate similar chemical environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信