基于调整距离的自归一化自相关测试

IF 1.8 4区 经济学 Q2 ECONOMICS
Jiajing Sun , Meiting Zhu , Oliver Linton
{"title":"基于调整距离的自归一化自相关测试","authors":"Jiajing Sun ,&nbsp;Meiting Zhu ,&nbsp;Oliver Linton","doi":"10.1016/j.econlet.2025.112315","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents adjusted range-based self-normalized tests for the autocorrelation function (ACF) in time series, which is crucial for understanding the dependence structure and making reliable statistical inferences. Our approach offers improved performance, especially when testing for the presence of first-order ACF. We demonstrate the efficacy of these tests through simulations and apply them to analyze COVID-19 case counts in Beijing. The results confirm the robustness of our methods, promising significant advancements in the detection of temporal dependence in complex data settings.</div></div>","PeriodicalId":11468,"journal":{"name":"Economics Letters","volume":"251 ","pages":"Article 112315"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adjusted-range-based self-normalized autocorrelation tests\",\"authors\":\"Jiajing Sun ,&nbsp;Meiting Zhu ,&nbsp;Oliver Linton\",\"doi\":\"10.1016/j.econlet.2025.112315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents adjusted range-based self-normalized tests for the autocorrelation function (ACF) in time series, which is crucial for understanding the dependence structure and making reliable statistical inferences. Our approach offers improved performance, especially when testing for the presence of first-order ACF. We demonstrate the efficacy of these tests through simulations and apply them to analyze COVID-19 case counts in Beijing. The results confirm the robustness of our methods, promising significant advancements in the detection of temporal dependence in complex data settings.</div></div>\",\"PeriodicalId\":11468,\"journal\":{\"name\":\"Economics Letters\",\"volume\":\"251 \",\"pages\":\"Article 112315\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics Letters\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165176525001521\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165176525001521","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了时间序列中自相关函数(ACF)的基于调整距离的自归一化检验方法,这对于理解时间序列的相关性结构和做出可靠的统计推断至关重要。我们的方法提供了改进的性能,特别是在测试一阶ACF的存在时。我们通过模拟验证了这些测试的有效性,并将其应用于分析北京的COVID-19病例数。结果证实了我们的方法的鲁棒性,有望在复杂数据设置中检测时间依赖性方面取得重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjusted-range-based self-normalized autocorrelation tests
This paper presents adjusted range-based self-normalized tests for the autocorrelation function (ACF) in time series, which is crucial for understanding the dependence structure and making reliable statistical inferences. Our approach offers improved performance, especially when testing for the presence of first-order ACF. We demonstrate the efficacy of these tests through simulations and apply them to analyze COVID-19 case counts in Beijing. The results confirm the robustness of our methods, promising significant advancements in the detection of temporal dependence in complex data settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Economics Letters
Economics Letters ECONOMICS-
CiteScore
3.20
自引率
5.00%
发文量
348
审稿时长
30 days
期刊介绍: Many economists today are concerned by the proliferation of journals and the concomitant labyrinth of research to be conquered in order to reach the specific information they require. To combat this tendency, Economics Letters has been conceived and designed outside the realm of the traditional economics journal. As a Letters Journal, it consists of concise communications (letters) that provide a means of rapid and efficient dissemination of new results, models and methods in all fields of economic research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信