CH4部分氧化制富h2合成气的Gd-Ni/MCM-41催化剂优化

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Salma A. Al-Zahrani , Ahmed S. Al-Fatesh , Ahmed Mohamed El-Toni , Najat Masood , Sahar Y. Rajeh , Ahmed Al Otaibi , Rawesh Kumar
{"title":"CH4部分氧化制富h2合成气的Gd-Ni/MCM-41催化剂优化","authors":"Salma A. Al-Zahrani ,&nbsp;Ahmed S. Al-Fatesh ,&nbsp;Ahmed Mohamed El-Toni ,&nbsp;Najat Masood ,&nbsp;Sahar Y. Rajeh ,&nbsp;Ahmed Al Otaibi ,&nbsp;Rawesh Kumar","doi":"10.1016/j.jtice.2025.106133","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Methane is a highly potent greenhouse gas and one of the major culprits of global warming. Partial oxidation of methane (POM) is a catalytic route for getting hydrogen-rich syngas upon mitigation of methane. However, achieving &gt; 80 % H<sub>2</sub> yield at low temperatures as 600 °C remains challenging.</div></div><div><h3>Methods</h3><div>Herein, 5 wt. % Ni supported over MCM-41 (an ordered mesoporous silicate) and 0.5–2 wt. % Gd promoted 5Ni/MCM-41 are prepared by impregnation method and investigated for POM at 600 °C. To validate activity results, catalysts are characterized by surface area and porosity, X-ray diffraction, Temperature programmed techniques, thermogravimetric analysis, Transmission electron microscopy, and X-ray photo electron microscopy.</div></div><div><h3>Significant findings</h3><div>Increasing loading of Gd over 5Ni/MCM-41catalysts is found to optimize the size of Ni crystallite as low as 7.6 nm (than 22.2 nm in 5Ni/MCM-41), to enhance the surface area up to 25 % and to expand the pore volume up to 28 %. At optimum Gd loading (1 wt. %), all active sites are generated, and ∼85 % H<sub>2</sub> yield with 2.3 H<sub>2</sub>/CO ratio is achieved constantly up to 240 min on stream. The low reaction temperature requirement (600 °C) and achieving consistently high H<sub>2</sub> yield make the 5Ni1Gd/MCM-41 catalyst reasonable for the next level of catalytic development for industrial applications.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Gd-Ni/MCM-41 catalyst for H2-rich syngas production via CH4 partial oxidation\",\"authors\":\"Salma A. Al-Zahrani ,&nbsp;Ahmed S. Al-Fatesh ,&nbsp;Ahmed Mohamed El-Toni ,&nbsp;Najat Masood ,&nbsp;Sahar Y. Rajeh ,&nbsp;Ahmed Al Otaibi ,&nbsp;Rawesh Kumar\",\"doi\":\"10.1016/j.jtice.2025.106133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Methane is a highly potent greenhouse gas and one of the major culprits of global warming. Partial oxidation of methane (POM) is a catalytic route for getting hydrogen-rich syngas upon mitigation of methane. However, achieving &gt; 80 % H<sub>2</sub> yield at low temperatures as 600 °C remains challenging.</div></div><div><h3>Methods</h3><div>Herein, 5 wt. % Ni supported over MCM-41 (an ordered mesoporous silicate) and 0.5–2 wt. % Gd promoted 5Ni/MCM-41 are prepared by impregnation method and investigated for POM at 600 °C. To validate activity results, catalysts are characterized by surface area and porosity, X-ray diffraction, Temperature programmed techniques, thermogravimetric analysis, Transmission electron microscopy, and X-ray photo electron microscopy.</div></div><div><h3>Significant findings</h3><div>Increasing loading of Gd over 5Ni/MCM-41catalysts is found to optimize the size of Ni crystallite as low as 7.6 nm (than 22.2 nm in 5Ni/MCM-41), to enhance the surface area up to 25 % and to expand the pore volume up to 28 %. At optimum Gd loading (1 wt. %), all active sites are generated, and ∼85 % H<sub>2</sub> yield with 2.3 H<sub>2</sub>/CO ratio is achieved constantly up to 240 min on stream. The low reaction temperature requirement (600 °C) and achieving consistently high H<sub>2</sub> yield make the 5Ni1Gd/MCM-41 catalyst reasonable for the next level of catalytic development for industrial applications.</div></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"172 \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107025001865\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025001865","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

甲烷是一种强效温室气体,是全球变暖的罪魁祸首之一。甲烷部分氧化(POM)是甲烷减排后获得富氢合成气的催化途径。然而,实现>;在600°C的低温条件下,80%的H2产率仍然是一个挑战。方法采用浸渍法制备5 wt. % Ni负载的有序介孔硅酸盐MCM-41和0.5 wt. % Gd促进的5Ni/MCM-41,并在600℃下对POM进行研究。为了验证活性结果,催化剂的表面面积和孔隙度、x射线衍射、温度编程技术、热重分析、透射电子显微镜和x射线照片电子显微镜进行了表征。研究发现,在5Ni/MCM-41催化剂上增加Gd的负载可以优化Ni晶的尺寸,使其达到7.6 nm (5Ni/MCM-41催化剂为22.2 nm),使表面积增加25%,孔体积增加28%。在最佳Gd负荷(1 wt. %)下,所有活性位点都被生成,并且H2产率为~ 85%,H2/CO比为2.3,持续达240 min。低反应温度要求(600°C)和持续的高H2产率使5Ni1Gd/MCM-41催化剂成为工业应用下一阶段催化剂开发的合理选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing Gd-Ni/MCM-41 catalyst for H2-rich syngas production via CH4 partial oxidation

Optimizing Gd-Ni/MCM-41 catalyst for H2-rich syngas production via CH4 partial oxidation

Background

Methane is a highly potent greenhouse gas and one of the major culprits of global warming. Partial oxidation of methane (POM) is a catalytic route for getting hydrogen-rich syngas upon mitigation of methane. However, achieving > 80 % H2 yield at low temperatures as 600 °C remains challenging.

Methods

Herein, 5 wt. % Ni supported over MCM-41 (an ordered mesoporous silicate) and 0.5–2 wt. % Gd promoted 5Ni/MCM-41 are prepared by impregnation method and investigated for POM at 600 °C. To validate activity results, catalysts are characterized by surface area and porosity, X-ray diffraction, Temperature programmed techniques, thermogravimetric analysis, Transmission electron microscopy, and X-ray photo electron microscopy.

Significant findings

Increasing loading of Gd over 5Ni/MCM-41catalysts is found to optimize the size of Ni crystallite as low as 7.6 nm (than 22.2 nm in 5Ni/MCM-41), to enhance the surface area up to 25 % and to expand the pore volume up to 28 %. At optimum Gd loading (1 wt. %), all active sites are generated, and ∼85 % H2 yield with 2.3 H2/CO ratio is achieved constantly up to 240 min on stream. The low reaction temperature requirement (600 °C) and achieving consistently high H2 yield make the 5Ni1Gd/MCM-41 catalyst reasonable for the next level of catalytic development for industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信