Syam Prasad Ammineni , A. Kiran Kumar , R. P. Chowdary , A. Chandrakanth , Pagidipalli Saidulu
{"title":"频率和温度对天然橡胶和丁腈橡胶在不同温度下的粘弹性特性的影响:一项实验研究","authors":"Syam Prasad Ammineni , A. Kiran Kumar , R. P. Chowdary , A. Chandrakanth , Pagidipalli Saidulu","doi":"10.1080/1023666X.2025.2453748","DOIUrl":null,"url":null,"abstract":"<div><div>The study aims to evaluate the frequency and temperature-dependent viscoelastic properties of natural rubber (NR) and nitrile butadiene rubber (NBR) for vibration damping applications. The dynamic mechanical analysis (DMA) tests were conducted on NR and NBR at low frequencies, from room temperature to 112 °C. The experimental data were fitted using the generalized Maxwell model, and vibration tests were conducted to obtain dynamic properties such as natural frequencies, damping ratio, and quality factor. The loss factor for NR increased significantly above 80 °C, while for NBR, it decreased above 50 °C. At higher temperatures, both NR and NBR exhibited faster relaxation, but NR had a higher loss factor, indicating a better damping ability. The relaxation strength of NR increased above 60 °C, whereas that of NBR decreased, highlighting the differences in their damping abilities. NBR showed greater damping ability at the first natural frequency, while NR performed better at the second and third natural frequencies. According to the experimental findings, NR proves to be better suited for damping in high-temperature conditions, while NBR is more suitable for low-temperature damping applications. The relaxation modulus of NR is lower than that of NBR at lower temperatures, leading to a better damping performance for NR at higher temperatures. The study recommends using NR for high-temperature applications where high damping is required and NBR for low-temperature applications that require moderate damping.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"30 3","pages":"Pages 287-302"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency and temperature dependent viscoelastic properties of natural rubber and nitrile butadiene rubber at different temperatures for vibration damping applications: an experimental study\",\"authors\":\"Syam Prasad Ammineni , A. Kiran Kumar , R. P. Chowdary , A. Chandrakanth , Pagidipalli Saidulu\",\"doi\":\"10.1080/1023666X.2025.2453748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study aims to evaluate the frequency and temperature-dependent viscoelastic properties of natural rubber (NR) and nitrile butadiene rubber (NBR) for vibration damping applications. The dynamic mechanical analysis (DMA) tests were conducted on NR and NBR at low frequencies, from room temperature to 112 °C. The experimental data were fitted using the generalized Maxwell model, and vibration tests were conducted to obtain dynamic properties such as natural frequencies, damping ratio, and quality factor. The loss factor for NR increased significantly above 80 °C, while for NBR, it decreased above 50 °C. At higher temperatures, both NR and NBR exhibited faster relaxation, but NR had a higher loss factor, indicating a better damping ability. The relaxation strength of NR increased above 60 °C, whereas that of NBR decreased, highlighting the differences in their damping abilities. NBR showed greater damping ability at the first natural frequency, while NR performed better at the second and third natural frequencies. According to the experimental findings, NR proves to be better suited for damping in high-temperature conditions, while NBR is more suitable for low-temperature damping applications. The relaxation modulus of NR is lower than that of NBR at lower temperatures, leading to a better damping performance for NR at higher temperatures. The study recommends using NR for high-temperature applications where high damping is required and NBR for low-temperature applications that require moderate damping.</div></div>\",\"PeriodicalId\":14236,\"journal\":{\"name\":\"International Journal of Polymer Analysis and Characterization\",\"volume\":\"30 3\",\"pages\":\"Pages 287-302\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Analysis and Characterization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1023666X25000095\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X25000095","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Frequency and temperature dependent viscoelastic properties of natural rubber and nitrile butadiene rubber at different temperatures for vibration damping applications: an experimental study
The study aims to evaluate the frequency and temperature-dependent viscoelastic properties of natural rubber (NR) and nitrile butadiene rubber (NBR) for vibration damping applications. The dynamic mechanical analysis (DMA) tests were conducted on NR and NBR at low frequencies, from room temperature to 112 °C. The experimental data were fitted using the generalized Maxwell model, and vibration tests were conducted to obtain dynamic properties such as natural frequencies, damping ratio, and quality factor. The loss factor for NR increased significantly above 80 °C, while for NBR, it decreased above 50 °C. At higher temperatures, both NR and NBR exhibited faster relaxation, but NR had a higher loss factor, indicating a better damping ability. The relaxation strength of NR increased above 60 °C, whereas that of NBR decreased, highlighting the differences in their damping abilities. NBR showed greater damping ability at the first natural frequency, while NR performed better at the second and third natural frequencies. According to the experimental findings, NR proves to be better suited for damping in high-temperature conditions, while NBR is more suitable for low-temperature damping applications. The relaxation modulus of NR is lower than that of NBR at lower temperatures, leading to a better damping performance for NR at higher temperatures. The study recommends using NR for high-temperature applications where high damping is required and NBR for low-temperature applications that require moderate damping.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.