Pt-Ru对上桥吸附氢中间体在高效酸性制氢中的关键作用

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao Zhao, Baoxin Ni, Yongyu Pan, YuZe Li, Jun Li, Guoliang Wang, Zhiqing Zou, Kun Jiang, Qingqing Cheng, Lianhai Zu, Hui Yang
{"title":"Pt-Ru对上桥吸附氢中间体在高效酸性制氢中的关键作用","authors":"Hao Zhao, Baoxin Ni, Yongyu Pan, YuZe Li, Jun Li, Guoliang Wang, Zhiqing Zou, Kun Jiang, Qingqing Cheng, Lianhai Zu, Hui Yang","doi":"10.1002/adma.202503221","DOIUrl":null,"url":null,"abstract":"Atop and multiple adsorbed hydrogen are considered as key intermediates on Pt-group metal for acidic hydrogen evolution reaction (HER), yet the role of bridge hydrogen intermediate (<sup>*</sup>H<sub>bridge</sub>) is consistently overlooked experimentally. Herein, a Pt atomic chain modified <i>fcc</i>-Ru nanocrystal (Pt–Ru(<i>fcc</i>)) is developed with a co-crystalline structure, featuring <sup>*</sup>H<sub>bridge</sub> intermediate bonded on the Pt–Ru pair site. Electrons leap from the pair site to <sup>*</sup>H<sub>bridge</sub> facilitate hydrogen desorption, thus accelerating the Tafel kinetics and ensuring outstanding electrocatalytic performance, with a low overpotential (4.0 mV at 10 mA cm<sup>−2</sup>) and high turnover frequency (56.4 H<sub>2</sub> s<sup>−1</sup> at 50 mV). Notably, the proton exchange membrane water electrolyzer PEMWE with ultra-low loading of 10 ug<sub>Pt</sub> cm<sup>−2</sup> shows excellent activity (1.61 V at 1.0 A cm<sup>−2</sup>) and low average degradation rate (4.0 µV h<sup>−1</sup> over 1000 h), significantly outperforming the benchmark Pt/C. Furthermore, the PEMWE-based 80 µm Gore membrane under identical operating conditions requires only 1.54 and 1.58 V to achieve 1.0 and 1.5 A cm<sup>−2</sup>. This finding highlights the key role of <sup>*</sup>H<sub>bridge</sub> at the Pt–Ru interface in obtaining high HER intrinsic activity and underscores the transformative potential in designing next-generation bimetallic catalysts for clean hydrogen energy.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Key Role of Bridge Adsorbed Hydrogen Intermediate on Pt–Ru Pair for Efficient Acidic Hydrogen Production\",\"authors\":\"Hao Zhao, Baoxin Ni, Yongyu Pan, YuZe Li, Jun Li, Guoliang Wang, Zhiqing Zou, Kun Jiang, Qingqing Cheng, Lianhai Zu, Hui Yang\",\"doi\":\"10.1002/adma.202503221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atop and multiple adsorbed hydrogen are considered as key intermediates on Pt-group metal for acidic hydrogen evolution reaction (HER), yet the role of bridge hydrogen intermediate (<sup>*</sup>H<sub>bridge</sub>) is consistently overlooked experimentally. Herein, a Pt atomic chain modified <i>fcc</i>-Ru nanocrystal (Pt–Ru(<i>fcc</i>)) is developed with a co-crystalline structure, featuring <sup>*</sup>H<sub>bridge</sub> intermediate bonded on the Pt–Ru pair site. Electrons leap from the pair site to <sup>*</sup>H<sub>bridge</sub> facilitate hydrogen desorption, thus accelerating the Tafel kinetics and ensuring outstanding electrocatalytic performance, with a low overpotential (4.0 mV at 10 mA cm<sup>−2</sup>) and high turnover frequency (56.4 H<sub>2</sub> s<sup>−1</sup> at 50 mV). Notably, the proton exchange membrane water electrolyzer PEMWE with ultra-low loading of 10 ug<sub>Pt</sub> cm<sup>−2</sup> shows excellent activity (1.61 V at 1.0 A cm<sup>−2</sup>) and low average degradation rate (4.0 µV h<sup>−1</sup> over 1000 h), significantly outperforming the benchmark Pt/C. Furthermore, the PEMWE-based 80 µm Gore membrane under identical operating conditions requires only 1.54 and 1.58 V to achieve 1.0 and 1.5 A cm<sup>−2</sup>. This finding highlights the key role of <sup>*</sup>H<sub>bridge</sub> at the Pt–Ru interface in obtaining high HER intrinsic activity and underscores the transformative potential in designing next-generation bimetallic catalysts for clean hydrogen energy.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202503221\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202503221","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在pt基金属的酸性析氢反应(HER)中,顶部和多重吸附的氢被认为是关键中间体,但桥式氢中间体(*Hbridge)的作用在实验中一直被忽视。本文制备了一种Pt原子链修饰的fcc- ru纳米晶体(Pt - ru (fcc)),其共晶结构在Pt - ru对位点上具有*Hbridge中间键。电子从对位点跃迁到*Hbridge促进氢的脱附,从而加速了Tafel动力学并确保了出色的电催化性能,具有低过电位(10 mA cm - 2时4.0 mV)和高周转频率(50 mV时56.4 H2 s - 1)。值得注意的是,质子交换膜水电解器PEMWE在10 ugPt cm−2的超低负荷下表现出优异的活性(1.0 A cm−2时为1.61 V)和较低的平均降解率(超过1000 h时为4.0 μ V h−1),显著优于基准Pt/C。此外,在相同的操作条件下,基于pemwe的80µm Gore膜仅需1.54和1.58 V即可达到1.0和1.5 A cm−2。这一发现强调了*Hbridge在Pt-Ru界面上获得高HER固有活性的关键作用,并强调了设计下一代清洁氢能源双金属催化剂的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Key Role of Bridge Adsorbed Hydrogen Intermediate on Pt–Ru Pair for Efficient Acidic Hydrogen Production

Key Role of Bridge Adsorbed Hydrogen Intermediate on Pt–Ru Pair for Efficient Acidic Hydrogen Production
Atop and multiple adsorbed hydrogen are considered as key intermediates on Pt-group metal for acidic hydrogen evolution reaction (HER), yet the role of bridge hydrogen intermediate (*Hbridge) is consistently overlooked experimentally. Herein, a Pt atomic chain modified fcc-Ru nanocrystal (Pt–Ru(fcc)) is developed with a co-crystalline structure, featuring *Hbridge intermediate bonded on the Pt–Ru pair site. Electrons leap from the pair site to *Hbridge facilitate hydrogen desorption, thus accelerating the Tafel kinetics and ensuring outstanding electrocatalytic performance, with a low overpotential (4.0 mV at 10 mA cm−2) and high turnover frequency (56.4 H2 s−1 at 50 mV). Notably, the proton exchange membrane water electrolyzer PEMWE with ultra-low loading of 10 ugPt cm−2 shows excellent activity (1.61 V at 1.0 A cm−2) and low average degradation rate (4.0 µV h−1 over 1000 h), significantly outperforming the benchmark Pt/C. Furthermore, the PEMWE-based 80 µm Gore membrane under identical operating conditions requires only 1.54 and 1.58 V to achieve 1.0 and 1.5 A cm−2. This finding highlights the key role of *Hbridge at the Pt–Ru interface in obtaining high HER intrinsic activity and underscores the transformative potential in designing next-generation bimetallic catalysts for clean hydrogen energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信