{"title":"分子振动纳米光谱学的尖端增强和频率生成","authors":"Atsunori Sakurai, Shota Takahashi, Tatsuto Mochizuki, Toshiki Sugimoto","doi":"10.1021/acs.nanolett.4c06065","DOIUrl":null,"url":null,"abstract":"Vibrational sum frequency generation (SFG) is a nonlinear spectroscopic technique widely used to study the molecular structure and dynamics of surface systems. However, the spatial resolution achieved by far-field observations is constrained by the diffraction limit, obscuring molecular details in inhomogeneous structures smaller than the wavelength of light. To overcome this limitation, we developed a system for tip-enhanced SFG (TE-SFG) spectroscopy based on a scanning tunneling microscope. We successfully detected vibrational TE-SFG signals from adsorbed molecules on a gold substrate under ambient conditions. The phase analysis of interferometric SFG spectra provided information on molecular orientation. Furthermore, the observed TE-SFG signal was confirmed to originate from a highly localized region within a gap between the tip apex and the sample substrate. This method offers a novel platform for nonlinear optical nanospectroscopy, paving the way for the investigation of surface molecular systems beyond the diffraction limit.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tip-Enhanced Sum Frequency Generation for Molecular Vibrational Nanospectroscopy\",\"authors\":\"Atsunori Sakurai, Shota Takahashi, Tatsuto Mochizuki, Toshiki Sugimoto\",\"doi\":\"10.1021/acs.nanolett.4c06065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibrational sum frequency generation (SFG) is a nonlinear spectroscopic technique widely used to study the molecular structure and dynamics of surface systems. However, the spatial resolution achieved by far-field observations is constrained by the diffraction limit, obscuring molecular details in inhomogeneous structures smaller than the wavelength of light. To overcome this limitation, we developed a system for tip-enhanced SFG (TE-SFG) spectroscopy based on a scanning tunneling microscope. We successfully detected vibrational TE-SFG signals from adsorbed molecules on a gold substrate under ambient conditions. The phase analysis of interferometric SFG spectra provided information on molecular orientation. Furthermore, the observed TE-SFG signal was confirmed to originate from a highly localized region within a gap between the tip apex and the sample substrate. This method offers a novel platform for nonlinear optical nanospectroscopy, paving the way for the investigation of surface molecular systems beyond the diffraction limit.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c06065\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06065","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tip-Enhanced Sum Frequency Generation for Molecular Vibrational Nanospectroscopy
Vibrational sum frequency generation (SFG) is a nonlinear spectroscopic technique widely used to study the molecular structure and dynamics of surface systems. However, the spatial resolution achieved by far-field observations is constrained by the diffraction limit, obscuring molecular details in inhomogeneous structures smaller than the wavelength of light. To overcome this limitation, we developed a system for tip-enhanced SFG (TE-SFG) spectroscopy based on a scanning tunneling microscope. We successfully detected vibrational TE-SFG signals from adsorbed molecules on a gold substrate under ambient conditions. The phase analysis of interferometric SFG spectra provided information on molecular orientation. Furthermore, the observed TE-SFG signal was confirmed to originate from a highly localized region within a gap between the tip apex and the sample substrate. This method offers a novel platform for nonlinear optical nanospectroscopy, paving the way for the investigation of surface molecular systems beyond the diffraction limit.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.