Shanshan Chen, Zhenghua Tao, Xinqing Zheng, Fengyuan Chen, Li Zhang, Shiquan Chen, Ke Pan
{"title":"Rare earth elements in seagrass beds: Contamination, bioaccumulation, and biomonitoring","authors":"Shanshan Chen, Zhenghua Tao, Xinqing Zheng, Fengyuan Chen, Li Zhang, Shiquan Chen, Ke Pan","doi":"10.1016/j.jhazmat.2025.138271","DOIUrl":null,"url":null,"abstract":"Coastal environments are increasingly vulnerable to contamination from rare earth elements (REE) due to expanding anthropogenic activities, yet the fate and ecological risks of REE in ecologically critical seagrass ecosystems remain poorly understood. This study deciphered the behavior, fractionation, and compartmentalization of REE in both seagrass sediments and tissues. Total REE concentrations in sediments ranged from 70.5 to 258.8<!-- --> <!-- -->mg<!-- --> <!-- -->kg<sup>–1</sup>, with Ce emerging as the most enriched REE in both matrices. Pollution Load Index varied from 0.7 to 3.0, indicating slight to moderate REE pollution, with localized enrichment of some REE (e.g., Tb, Lu) pointing to anthropogenic influences such as industrial effluents and marine traffic. Principal component and enrichment factor analyses attribute approximately 66% of REE patterns to geogenic weathering, while 22.6% reflect anthropogenic contributions. Geochemical partitioning revealed that Fe-Mn oxides serve as major REE sinks, while organic matter plays a dual role—enhancing total REE retention through complexation yet reducing mobility by stabilizing labile fractions. Correlations between REE concentrations in seagrass tissues and sediments suggest species-specific uptake and limited translocation. These findings underscore the capacity of seagrasses to serve as sensitive bioindicators for REE pollution and highlight the importance of organic matter and rhizosphere processes in modulating REE bioavailability.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"108 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138271","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Rare earth elements in seagrass beds: Contamination, bioaccumulation, and biomonitoring
Coastal environments are increasingly vulnerable to contamination from rare earth elements (REE) due to expanding anthropogenic activities, yet the fate and ecological risks of REE in ecologically critical seagrass ecosystems remain poorly understood. This study deciphered the behavior, fractionation, and compartmentalization of REE in both seagrass sediments and tissues. Total REE concentrations in sediments ranged from 70.5 to 258.8 mg kg–1, with Ce emerging as the most enriched REE in both matrices. Pollution Load Index varied from 0.7 to 3.0, indicating slight to moderate REE pollution, with localized enrichment of some REE (e.g., Tb, Lu) pointing to anthropogenic influences such as industrial effluents and marine traffic. Principal component and enrichment factor analyses attribute approximately 66% of REE patterns to geogenic weathering, while 22.6% reflect anthropogenic contributions. Geochemical partitioning revealed that Fe-Mn oxides serve as major REE sinks, while organic matter plays a dual role—enhancing total REE retention through complexation yet reducing mobility by stabilizing labile fractions. Correlations between REE concentrations in seagrass tissues and sediments suggest species-specific uptake and limited translocation. These findings underscore the capacity of seagrasses to serve as sensitive bioindicators for REE pollution and highlight the importance of organic matter and rhizosphere processes in modulating REE bioavailability.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.