ITO 上的高效双面窄带隙 Ag-CuInSe2 太阳能电池

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Amanat Ali, Dong-Hwan Jeon, Wonjoon Kim, Van-Quy Hoang, Jaebaek Lee, Dae-Ho Son, Jin-Kyu Kang, Kee-Jeong Yang, Dae-Kue Hwang, Shi-Joon Sung, Dae-Hwan Kim
{"title":"ITO 上的高效双面窄带隙 Ag-CuInSe2 太阳能电池","authors":"Amanat Ali, Dong-Hwan Jeon, Wonjoon Kim, Van-Quy Hoang, Jaebaek Lee, Dae-Ho Son, Jin-Kyu Kang, Kee-Jeong Yang, Dae-Kue Hwang, Shi-Joon Sung, Dae-Hwan Kim","doi":"10.1002/aenm.202500899","DOIUrl":null,"url":null,"abstract":"Bifacial CuInSe₂ (CISe) solar cells hold significant promise for various applications but are constrained by relatively low power conversion efficiencies. This study boosts performance through reducing CISe absorber deposition temperature and using low-Ga back grading for an optimum gallium-to-indium ratio (Ga/(Ga+In); GGI) profile. Low deposition temperatures reduced ITO back contact thermal degradation, while low Ga concentration reduced GaO<sub>X</sub> formation and CISe/ITO charge recombination. Ag incorporation significantly improved key photovoltaic parameters, including open-circuit voltage (<i>V<sub>OC</sub></i>) and fill factor (FF), while reducing Cu<sub>2−X</sub>Se secondary phase formation. This approach enables high-quality CISe growth below 420 °C-substantially lower than conventional temperatures. The study achieves record efficiency in the narrow bandgap CISe category, with Ag-alloyed devices demonstrating a champion rear-side efficiency of 8.44% at 390 °C, and a front-side efficiency of 15.30% at 420 °C. Under the assumption of double-sided total 2.0 solar illumination in an albedo environment, a champion bifacial power generation density (BPGD) of 23.1 mWcm<sup>−2</sup> is achieved. Results indicate that lower deposition temperatures enhance rear-side performance, highlighting the role of low-temperature processing, low Ga doping, and Ag alloying in suppressing carrier recombination losses in CISe solar cells.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"116 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Efficient Bifacial Narrow Bandgap Ag-CuInSe2 Solar Cells on ITO\",\"authors\":\"Amanat Ali, Dong-Hwan Jeon, Wonjoon Kim, Van-Quy Hoang, Jaebaek Lee, Dae-Ho Son, Jin-Kyu Kang, Kee-Jeong Yang, Dae-Kue Hwang, Shi-Joon Sung, Dae-Hwan Kim\",\"doi\":\"10.1002/aenm.202500899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bifacial CuInSe₂ (CISe) solar cells hold significant promise for various applications but are constrained by relatively low power conversion efficiencies. This study boosts performance through reducing CISe absorber deposition temperature and using low-Ga back grading for an optimum gallium-to-indium ratio (Ga/(Ga+In); GGI) profile. Low deposition temperatures reduced ITO back contact thermal degradation, while low Ga concentration reduced GaO<sub>X</sub> formation and CISe/ITO charge recombination. Ag incorporation significantly improved key photovoltaic parameters, including open-circuit voltage (<i>V<sub>OC</sub></i>) and fill factor (FF), while reducing Cu<sub>2−X</sub>Se secondary phase formation. This approach enables high-quality CISe growth below 420 °C-substantially lower than conventional temperatures. The study achieves record efficiency in the narrow bandgap CISe category, with Ag-alloyed devices demonstrating a champion rear-side efficiency of 8.44% at 390 °C, and a front-side efficiency of 15.30% at 420 °C. Under the assumption of double-sided total 2.0 solar illumination in an albedo environment, a champion bifacial power generation density (BPGD) of 23.1 mWcm<sup>−2</sup> is achieved. Results indicate that lower deposition temperatures enhance rear-side performance, highlighting the role of low-temperature processing, low Ga doping, and Ag alloying in suppressing carrier recombination losses in CISe solar cells.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202500899\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500899","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

双面 CuInSe₂(CISe)太阳能电池在各种应用中大有可为,但受限于相对较低的功率转换效率。本研究通过降低 CISe 吸收剂沉积温度和使用低镓背分级以获得最佳镓铟比 (Ga/(Ga+In); GGI) 曲线来提高性能。低沉积温度降低了 ITO 背接触热降解,而低镓浓度则减少了 GaOX 的形成和 CISe/ITO 电荷重组。银的加入大大改善了关键的光伏参数,包括开路电压(VOC)和填充因子(FF),同时减少了 Cu2-XSe 次生相的形成。这种方法可在 420 °C 以下实现高质量的 CISe 生长,大大低于传统温度。该研究在窄带隙 CISe 类产品中实现了创纪录的效率,其中 Ag-alloyed 器件在 390 ℃ 时的后侧效率为 8.44%,在 420 ℃ 时的前侧效率为 15.30%。在反照率环境下,假设双面总太阳光照度为 2.0,则双面发电密度(BPGD)最高可达 23.1 mWcm-2。研究结果表明,较低的沉积温度可提高背面性能,突出了低温加工、低掺镓和银合金在抑制 CISe 太阳能电池中载流子重组损耗方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly Efficient Bifacial Narrow Bandgap Ag-CuInSe2 Solar Cells on ITO

Highly Efficient Bifacial Narrow Bandgap Ag-CuInSe2 Solar Cells on ITO
Bifacial CuInSe₂ (CISe) solar cells hold significant promise for various applications but are constrained by relatively low power conversion efficiencies. This study boosts performance through reducing CISe absorber deposition temperature and using low-Ga back grading for an optimum gallium-to-indium ratio (Ga/(Ga+In); GGI) profile. Low deposition temperatures reduced ITO back contact thermal degradation, while low Ga concentration reduced GaOX formation and CISe/ITO charge recombination. Ag incorporation significantly improved key photovoltaic parameters, including open-circuit voltage (VOC) and fill factor (FF), while reducing Cu2−XSe secondary phase formation. This approach enables high-quality CISe growth below 420 °C-substantially lower than conventional temperatures. The study achieves record efficiency in the narrow bandgap CISe category, with Ag-alloyed devices demonstrating a champion rear-side efficiency of 8.44% at 390 °C, and a front-side efficiency of 15.30% at 420 °C. Under the assumption of double-sided total 2.0 solar illumination in an albedo environment, a champion bifacial power generation density (BPGD) of 23.1 mWcm−2 is achieved. Results indicate that lower deposition temperatures enhance rear-side performance, highlighting the role of low-temperature processing, low Ga doping, and Ag alloying in suppressing carrier recombination losses in CISe solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信