手性DNA点突变的电子扰动

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-11 DOI:10.1021/acsnano.4c13148
Juyong Gwak, Yehree Kim, Se Jeong Park, Jinhee Han, Ki-Jae Jeong, My-Chi Nguyen, Huu-Quang Nguyen, Hyojin Kang, Mahendra Goddati, Sungwan Kim, Jingyao Wu, Hongxia Chen, Byung Yoon Choi, Jaebeom Lee
{"title":"手性DNA点突变的电子扰动","authors":"Juyong Gwak, Yehree Kim, Se Jeong Park, Jinhee Han, Ki-Jae Jeong, My-Chi Nguyen, Huu-Quang Nguyen, Hyojin Kang, Mahendra Goddati, Sungwan Kim, Jingyao Wu, Hongxia Chen, Byung Yoon Choi, Jaebeom Lee","doi":"10.1021/acsnano.4c13148","DOIUrl":null,"url":null,"abstract":"Advances in molecular nanotechnology have enabled the design of systems that exploit nanoscale interactions for enhanced biosensing and diagnostics. Here, we present a plasmonic nematic film (PNF) that leverages nanoscale plasmonic hotspots to amplify electron perturbations induced by DNA mutations. Sequence-specific mismatches, particularly point mutations, significantly alter the local electromagnetic environment, leading to distinct and quantifiable spectral shifts in circular dichroism (CD), denoted as Δλ<sub>dip</sub>. These shifts exhibit a strong correlation with target DNA concentration (<i>R</i><sup>2</sup> &gt; 0.99), enabling precise, quantitative detection of mutation-induced asymmetry. The underlying mechanism is modeled by the asymmetric chiral signal <i>I</i><sub>asy</sub> = ∫Ψ<sub>PNF*</sub>(Ω)Ψ<sub>PNF</sub> d<i>V</i>, where Ψ<sub>PNF</sub> is the wave function of the PNF and Ω represents its chiroptical response. Simulations and electric field analysis further validate that mutation-driven perturbations at the PNF-DNA interface enhance local field intensity at λ<sub>dip</sub>, while no significant changes occur at nonresonant wavelengths. Through this mechanism, the PNF platform achieves over 240% enhancement in chiroptical signal compared to wild-type DNA and enables mutation detection down to 1534 pg. These findings highlight the system’s potential for high-specificity diagnostics of clinically relevant mutations, including those associated with hereditary hearing impairment, and may inform the development of future chiral biosensing platforms.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"90 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron Perturbation for Chiral DNA Point Mutation\",\"authors\":\"Juyong Gwak, Yehree Kim, Se Jeong Park, Jinhee Han, Ki-Jae Jeong, My-Chi Nguyen, Huu-Quang Nguyen, Hyojin Kang, Mahendra Goddati, Sungwan Kim, Jingyao Wu, Hongxia Chen, Byung Yoon Choi, Jaebeom Lee\",\"doi\":\"10.1021/acsnano.4c13148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in molecular nanotechnology have enabled the design of systems that exploit nanoscale interactions for enhanced biosensing and diagnostics. Here, we present a plasmonic nematic film (PNF) that leverages nanoscale plasmonic hotspots to amplify electron perturbations induced by DNA mutations. Sequence-specific mismatches, particularly point mutations, significantly alter the local electromagnetic environment, leading to distinct and quantifiable spectral shifts in circular dichroism (CD), denoted as Δλ<sub>dip</sub>. These shifts exhibit a strong correlation with target DNA concentration (<i>R</i><sup>2</sup> &gt; 0.99), enabling precise, quantitative detection of mutation-induced asymmetry. The underlying mechanism is modeled by the asymmetric chiral signal <i>I</i><sub>asy</sub> = ∫Ψ<sub>PNF*</sub>(Ω)Ψ<sub>PNF</sub> d<i>V</i>, where Ψ<sub>PNF</sub> is the wave function of the PNF and Ω represents its chiroptical response. Simulations and electric field analysis further validate that mutation-driven perturbations at the PNF-DNA interface enhance local field intensity at λ<sub>dip</sub>, while no significant changes occur at nonresonant wavelengths. Through this mechanism, the PNF platform achieves over 240% enhancement in chiroptical signal compared to wild-type DNA and enables mutation detection down to 1534 pg. These findings highlight the system’s potential for high-specificity diagnostics of clinically relevant mutations, including those associated with hereditary hearing impairment, and may inform the development of future chiral biosensing platforms.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c13148\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13148","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

分子纳米技术的进步使得利用纳米级相互作用来增强生物传感和诊断的系统设计成为可能。在这里,我们提出了一种等离子体向列膜(PNF),它利用纳米级等离子体热点来放大DNA突变引起的电子扰动。序列特异性错配,特别是点突变,显著改变了局部电磁环境,导致圆二色性(CD)中明显且可量化的光谱偏移,表示为Δλdip。这些变化与目标DNA浓度有很强的相关性(R2 >;0.99),能够精确、定量地检测突变引起的不对称性。潜在的机制是通过不对称手性信号Iasy =∫ΨPNF*(Ω)ΨPNF dV来建模的,其中ΨPNF是PNF的波函数,Ω表示其手性响应。模拟和电场分析进一步验证了突变驱动的PNF-DNA界面微扰增强了λdip处的局部场强,而在非共振波长处没有显著变化。通过这种机制,与野生型DNA相比,PNF平台实现了超过240%的手性信号增强,并且能够检测到低至1534 pg的突变。这些发现突出了该系统在临床相关突变(包括与遗传性听力障碍相关的突变)的高特异性诊断方面的潜力,并可能为未来手性生物传感平台的发展提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electron Perturbation for Chiral DNA Point Mutation

Electron Perturbation for Chiral DNA Point Mutation
Advances in molecular nanotechnology have enabled the design of systems that exploit nanoscale interactions for enhanced biosensing and diagnostics. Here, we present a plasmonic nematic film (PNF) that leverages nanoscale plasmonic hotspots to amplify electron perturbations induced by DNA mutations. Sequence-specific mismatches, particularly point mutations, significantly alter the local electromagnetic environment, leading to distinct and quantifiable spectral shifts in circular dichroism (CD), denoted as Δλdip. These shifts exhibit a strong correlation with target DNA concentration (R2 > 0.99), enabling precise, quantitative detection of mutation-induced asymmetry. The underlying mechanism is modeled by the asymmetric chiral signal Iasy = ∫ΨPNF*(Ω)ΨPNF dV, where ΨPNF is the wave function of the PNF and Ω represents its chiroptical response. Simulations and electric field analysis further validate that mutation-driven perturbations at the PNF-DNA interface enhance local field intensity at λdip, while no significant changes occur at nonresonant wavelengths. Through this mechanism, the PNF platform achieves over 240% enhancement in chiroptical signal compared to wild-type DNA and enables mutation detection down to 1534 pg. These findings highlight the system’s potential for high-specificity diagnostics of clinically relevant mutations, including those associated with hereditary hearing impairment, and may inform the development of future chiral biosensing platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信