用于检测可弯曲曲面应变分布的大面积柔性挠曲传感矩阵

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Huihui Ma, Weiwei Li, Qixuan Zhu, Yunqiang Cao, Manzhang Xu, Yuxuan Xu, Siying Dang, Zihao Xu, Gaojie Chen, Lu Zheng, Xuewen Wang, Wei Huang
{"title":"用于检测可弯曲曲面应变分布的大面积柔性挠曲传感矩阵","authors":"Huihui Ma, Weiwei Li, Qixuan Zhu, Yunqiang Cao, Manzhang Xu, Yuxuan Xu, Siying Dang, Zihao Xu, Gaojie Chen, Lu Zheng, Xuewen Wang, Wei Huang","doi":"10.1021/acssensors.5c00153","DOIUrl":null,"url":null,"abstract":"Flexible flexion sensors are attracting attention due to their wide range of applications. It is urgent to develop a flexible sensor matrix to detect strain distribution on curved surfaces for object surface posture reconstruction, fault detection, and predictive maintenance. Herein, a convenient and universal method for preparing a flexible flexion sensor matrix is proposed using a versatile screen-printing technique. Compared to traditional thin film configurations, this process improved the sensitivity by introducing multiple interfaces and can be used for the fabrication of large-area flexion sensor matrix with high stability and consistency. The prepared flexible flexion sensors performed with a low detection limit (0.07%), a remarkable gauge factor (>50), and high stability (no apparent decay after 2000 bending–releasing cycles). We also demonstrated their applications in monitoring human body movement and gesture recognition. The sensors were integrated into a data glove for real-time robotic arm control, and achieved an accuracy rate of over 96% in recognizing various gestures with a neural network model. A large area flexible flexion sensor matrix (8 × 8) was fabricated by full-printing technique and enables simultaneous monitoring of multiposition bending states, which has significant potential in real-time tracking the strain distribution in bendable and curved surfaces.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"34 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Area and Flexible Flexion Sensing Matrix for Detection of Strain Distribution in Bendable and Curved Surface\",\"authors\":\"Huihui Ma, Weiwei Li, Qixuan Zhu, Yunqiang Cao, Manzhang Xu, Yuxuan Xu, Siying Dang, Zihao Xu, Gaojie Chen, Lu Zheng, Xuewen Wang, Wei Huang\",\"doi\":\"10.1021/acssensors.5c00153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible flexion sensors are attracting attention due to their wide range of applications. It is urgent to develop a flexible sensor matrix to detect strain distribution on curved surfaces for object surface posture reconstruction, fault detection, and predictive maintenance. Herein, a convenient and universal method for preparing a flexible flexion sensor matrix is proposed using a versatile screen-printing technique. Compared to traditional thin film configurations, this process improved the sensitivity by introducing multiple interfaces and can be used for the fabrication of large-area flexion sensor matrix with high stability and consistency. The prepared flexible flexion sensors performed with a low detection limit (0.07%), a remarkable gauge factor (>50), and high stability (no apparent decay after 2000 bending–releasing cycles). We also demonstrated their applications in monitoring human body movement and gesture recognition. The sensors were integrated into a data glove for real-time robotic arm control, and achieved an accuracy rate of over 96% in recognizing various gestures with a neural network model. A large area flexible flexion sensor matrix (8 × 8) was fabricated by full-printing technique and enables simultaneous monitoring of multiposition bending states, which has significant potential in real-time tracking the strain distribution in bendable and curved surfaces.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.5c00153\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c00153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large Area and Flexible Flexion Sensing Matrix for Detection of Strain Distribution in Bendable and Curved Surface

Large Area and Flexible Flexion Sensing Matrix for Detection of Strain Distribution in Bendable and Curved Surface
Flexible flexion sensors are attracting attention due to their wide range of applications. It is urgent to develop a flexible sensor matrix to detect strain distribution on curved surfaces for object surface posture reconstruction, fault detection, and predictive maintenance. Herein, a convenient and universal method for preparing a flexible flexion sensor matrix is proposed using a versatile screen-printing technique. Compared to traditional thin film configurations, this process improved the sensitivity by introducing multiple interfaces and can be used for the fabrication of large-area flexion sensor matrix with high stability and consistency. The prepared flexible flexion sensors performed with a low detection limit (0.07%), a remarkable gauge factor (>50), and high stability (no apparent decay after 2000 bending–releasing cycles). We also demonstrated their applications in monitoring human body movement and gesture recognition. The sensors were integrated into a data glove for real-time robotic arm control, and achieved an accuracy rate of over 96% in recognizing various gestures with a neural network model. A large area flexible flexion sensor matrix (8 × 8) was fabricated by full-printing technique and enables simultaneous monitoring of multiposition bending states, which has significant potential in real-time tracking the strain distribution in bendable and curved surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信