Alessandro Prositto, Madeline Forbes and Dvira Segal
{"title":"重复交互协议的平衡和非平衡稳态:弛豫动力学和能量成本","authors":"Alessandro Prositto, Madeline Forbes and Dvira Segal","doi":"10.1088/2058-9565/adc7d4","DOIUrl":null,"url":null,"abstract":"We study the dynamics of a qubit system interacting with thermalized bath-ancilla spins via a repeated interaction scheme. Considering generic initial conditions for the system and employing a Heisenberg-type interaction between the system and the ancillas, we analytically prove the following: (i) the populations and coherences of the qubit system evolve independently toward a nonequilibrium steady-state solution, which is diagonal in the qubit’s energy eigenbasis. The population relaxes to this state geometrically, whereas the coherences decay through a more compound behavior. (ii) In the long time limit, the system approaches a steady state that generally differs from the thermal state of the ancilla. We derive this steady-state solution and show its dependence on the interaction parameters and collision frequency. (iii) We bound the number of interaction steps required to achieve the steady state within a specified error tolerance, and we evaluate the energetic cost associated with the process. Our key finding is that deterministic system-ancilla interactions do not typically result in the system thermalizing to the thermal state of the ancilla. Instead, they generate a distinct nonequilibrium steady state, which we explicitly derive. However, we also identify an operational regime that leads to thermalization with a few long and possibly randomized collisions.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"34 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equilibrium and nonequilibrium steady states with the repeated interaction protocol: relaxation dynamics and energetic cost\",\"authors\":\"Alessandro Prositto, Madeline Forbes and Dvira Segal\",\"doi\":\"10.1088/2058-9565/adc7d4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the dynamics of a qubit system interacting with thermalized bath-ancilla spins via a repeated interaction scheme. Considering generic initial conditions for the system and employing a Heisenberg-type interaction between the system and the ancillas, we analytically prove the following: (i) the populations and coherences of the qubit system evolve independently toward a nonequilibrium steady-state solution, which is diagonal in the qubit’s energy eigenbasis. The population relaxes to this state geometrically, whereas the coherences decay through a more compound behavior. (ii) In the long time limit, the system approaches a steady state that generally differs from the thermal state of the ancilla. We derive this steady-state solution and show its dependence on the interaction parameters and collision frequency. (iii) We bound the number of interaction steps required to achieve the steady state within a specified error tolerance, and we evaluate the energetic cost associated with the process. Our key finding is that deterministic system-ancilla interactions do not typically result in the system thermalizing to the thermal state of the ancilla. Instead, they generate a distinct nonequilibrium steady state, which we explicitly derive. However, we also identify an operational regime that leads to thermalization with a few long and possibly randomized collisions.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adc7d4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adc7d4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Equilibrium and nonequilibrium steady states with the repeated interaction protocol: relaxation dynamics and energetic cost
We study the dynamics of a qubit system interacting with thermalized bath-ancilla spins via a repeated interaction scheme. Considering generic initial conditions for the system and employing a Heisenberg-type interaction between the system and the ancillas, we analytically prove the following: (i) the populations and coherences of the qubit system evolve independently toward a nonequilibrium steady-state solution, which is diagonal in the qubit’s energy eigenbasis. The population relaxes to this state geometrically, whereas the coherences decay through a more compound behavior. (ii) In the long time limit, the system approaches a steady state that generally differs from the thermal state of the ancilla. We derive this steady-state solution and show its dependence on the interaction parameters and collision frequency. (iii) We bound the number of interaction steps required to achieve the steady state within a specified error tolerance, and we evaluate the energetic cost associated with the process. Our key finding is that deterministic system-ancilla interactions do not typically result in the system thermalizing to the thermal state of the ancilla. Instead, they generate a distinct nonequilibrium steady state, which we explicitly derive. However, we also identify an operational regime that leads to thermalization with a few long and possibly randomized collisions.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.