Ping Ding , Jiayi Zhang , Xin Li , Pengcheng Ma , Guocheng Hu , Lijuan Zhang , Yunjiang Yu
{"title":"环境相关浓度的三氯生诱导斑马鱼的跨代甲状腺激素紊乱","authors":"Ping Ding , Jiayi Zhang , Xin Li , Pengcheng Ma , Guocheng Hu , Lijuan Zhang , Yunjiang Yu","doi":"10.1016/j.envpol.2025.126242","DOIUrl":null,"url":null,"abstract":"<div><div>The use of triclosan (TCS)-containing disinfectants has become increasingly prevalent in response to the COVID-19 pandemic, leading to a heightened presence of TCS in aquatic ecosystems. Thyroid hormones (THs), which are essential for numerous developmental and metabolic processes, are structurally similar to TCS, rendering it prone to exert endocrine-disrupting effects. In this study, we demonstrate that TCS can induce thyroid hormone disruption in zebrafish, with transgenerational consequences. Zebrafish embryos were exposed to environmentally relevant concentrations of TCS (0, 1, 3, and 10 μg/L) for 30, 60, and 180 days. TCS accumulated in zebrafish over an extended period, causing significant, dose-dependent alterations in TH levels. Furthermore, TCS significantly thereby interfered with the expression of thyroid axis-related genes in the P0-F1 generations. Molecular docking further confirmed that TCS induces transgenerational thyroid effects through potentially strong interactions with thyroglobulin (TG), interfering with the normal physiological function of THs. These findings suggest that TCS at environmentally relevant concentrations can exert ecologically harmful effects by disrupting THs. A rigorous ecological assessment of TCS is recommended before promoting or substituting antimicrobial agents in future disinfection products.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"374 ","pages":"Article 126242"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transgenerational thyroid hormone disruption in zebrafish induced by environmentally relevant concentrations of triclosan\",\"authors\":\"Ping Ding , Jiayi Zhang , Xin Li , Pengcheng Ma , Guocheng Hu , Lijuan Zhang , Yunjiang Yu\",\"doi\":\"10.1016/j.envpol.2025.126242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of triclosan (TCS)-containing disinfectants has become increasingly prevalent in response to the COVID-19 pandemic, leading to a heightened presence of TCS in aquatic ecosystems. Thyroid hormones (THs), which are essential for numerous developmental and metabolic processes, are structurally similar to TCS, rendering it prone to exert endocrine-disrupting effects. In this study, we demonstrate that TCS can induce thyroid hormone disruption in zebrafish, with transgenerational consequences. Zebrafish embryos were exposed to environmentally relevant concentrations of TCS (0, 1, 3, and 10 μg/L) for 30, 60, and 180 days. TCS accumulated in zebrafish over an extended period, causing significant, dose-dependent alterations in TH levels. Furthermore, TCS significantly thereby interfered with the expression of thyroid axis-related genes in the P0-F1 generations. Molecular docking further confirmed that TCS induces transgenerational thyroid effects through potentially strong interactions with thyroglobulin (TG), interfering with the normal physiological function of THs. These findings suggest that TCS at environmentally relevant concentrations can exert ecologically harmful effects by disrupting THs. A rigorous ecological assessment of TCS is recommended before promoting or substituting antimicrobial agents in future disinfection products.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"374 \",\"pages\":\"Article 126242\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125006153\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125006153","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Transgenerational thyroid hormone disruption in zebrafish induced by environmentally relevant concentrations of triclosan
The use of triclosan (TCS)-containing disinfectants has become increasingly prevalent in response to the COVID-19 pandemic, leading to a heightened presence of TCS in aquatic ecosystems. Thyroid hormones (THs), which are essential for numerous developmental and metabolic processes, are structurally similar to TCS, rendering it prone to exert endocrine-disrupting effects. In this study, we demonstrate that TCS can induce thyroid hormone disruption in zebrafish, with transgenerational consequences. Zebrafish embryos were exposed to environmentally relevant concentrations of TCS (0, 1, 3, and 10 μg/L) for 30, 60, and 180 days. TCS accumulated in zebrafish over an extended period, causing significant, dose-dependent alterations in TH levels. Furthermore, TCS significantly thereby interfered with the expression of thyroid axis-related genes in the P0-F1 generations. Molecular docking further confirmed that TCS induces transgenerational thyroid effects through potentially strong interactions with thyroglobulin (TG), interfering with the normal physiological function of THs. These findings suggest that TCS at environmentally relevant concentrations can exert ecologically harmful effects by disrupting THs. A rigorous ecological assessment of TCS is recommended before promoting or substituting antimicrobial agents in future disinfection products.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.