Alex Hørby Christensen,Gang Pan,Rasmus L Marvig,Francisco German Rodriguez Gonzalez,Christoffer Rasmus Vissing,Elvira Silajdzija,Rasmus Frosted,Etsehiwot Girum Girma,Migle Gabrielaite,Henrik Kjærulf Jensen,Kasper Rossing,Finn Lund Henriksen,Niels Christian Foldager Sandgaard,Gustav Ahlberg,Jonas Ghouse,Pia Rengtved Lundegaard,Joachim Weischenfeldt,Claes Wadelius,Henning Bundgaard
{"title":"Gain-of-function enhancer variant near KCNB1 causes familial ST-depression syndrome.","authors":"Alex Hørby Christensen,Gang Pan,Rasmus L Marvig,Francisco German Rodriguez Gonzalez,Christoffer Rasmus Vissing,Elvira Silajdzija,Rasmus Frosted,Etsehiwot Girum Girma,Migle Gabrielaite,Henrik Kjærulf Jensen,Kasper Rossing,Finn Lund Henriksen,Niels Christian Foldager Sandgaard,Gustav Ahlberg,Jonas Ghouse,Pia Rengtved Lundegaard,Joachim Weischenfeldt,Claes Wadelius,Henning Bundgaard","doi":"10.1093/eurheartj/ehaf213","DOIUrl":null,"url":null,"abstract":"BACKGROUND AND AIMS\r\nFamilial ST-depression syndrome (FSTD) is a recently identified inherited cardiac disease associated with arrhythmias and systolic dysfunction. The underlying genetic aetiology has remained elusive. This study aimed at finding the causative variant.\r\n\r\nMETHODS\r\nA total of 67 FSTD patients (20 families) were studied. Linkage analysis and whole-genome sequencing (WGS) were initially performed. An identified non-coding variant was functionally characterized in AC16 human cardiomyocytes, muscle tissue, and human myocardium. In silico analyses, luciferase and dCas9-activator/repressor assays, protein-DNA experiments, chromosome conformation capture (4C), and RNA sequencing were also performed.\r\n\r\nRESULTS\r\nThe electrocardiographic (ECG) phenotype was inherited in an autosomal dominant manner in all families. Linkage analysis revealed a single peak on chromosome 20, and WGS identified a single, rare, non-coding variant located 18 kb downstream of KCNB1 on chromosome 20 in all affected individuals. Perfect co-segregation with the ECG phenotype was observed together with full penetrance in all families. The variant creates a MEF2-binding site and presence of the variant allele or MEF2 co-expression enhanced transcriptional activity. dCas9-activator/repressor assays showed that KCNB1 was the only gene consistently regulated by the locus and 4C experiments in AC16 cells and human muscle tissue confirmed the locus-KCNB1 promoter interaction. Expression analysis in human endocardial tissue did not document any change in gene expression likely explained by expressional heterogeneity.\r\n\r\nCONCLUSIONS\r\nA gain-of-function enhancer variant creates a hyperactive regulatory locus that interacts with the KCNB1 promoter and causes FSTD. This is the first time that KCNB1 has been implicated in human cardiac electrophysiology and arrhythmogenesis.","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":"3 1","pages":""},"PeriodicalIF":37.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/eurheartj/ehaf213","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Gain-of-function enhancer variant near KCNB1 causes familial ST-depression syndrome.
BACKGROUND AND AIMS
Familial ST-depression syndrome (FSTD) is a recently identified inherited cardiac disease associated with arrhythmias and systolic dysfunction. The underlying genetic aetiology has remained elusive. This study aimed at finding the causative variant.
METHODS
A total of 67 FSTD patients (20 families) were studied. Linkage analysis and whole-genome sequencing (WGS) were initially performed. An identified non-coding variant was functionally characterized in AC16 human cardiomyocytes, muscle tissue, and human myocardium. In silico analyses, luciferase and dCas9-activator/repressor assays, protein-DNA experiments, chromosome conformation capture (4C), and RNA sequencing were also performed.
RESULTS
The electrocardiographic (ECG) phenotype was inherited in an autosomal dominant manner in all families. Linkage analysis revealed a single peak on chromosome 20, and WGS identified a single, rare, non-coding variant located 18 kb downstream of KCNB1 on chromosome 20 in all affected individuals. Perfect co-segregation with the ECG phenotype was observed together with full penetrance in all families. The variant creates a MEF2-binding site and presence of the variant allele or MEF2 co-expression enhanced transcriptional activity. dCas9-activator/repressor assays showed that KCNB1 was the only gene consistently regulated by the locus and 4C experiments in AC16 cells and human muscle tissue confirmed the locus-KCNB1 promoter interaction. Expression analysis in human endocardial tissue did not document any change in gene expression likely explained by expressional heterogeneity.
CONCLUSIONS
A gain-of-function enhancer variant creates a hyperactive regulatory locus that interacts with the KCNB1 promoter and causes FSTD. This is the first time that KCNB1 has been implicated in human cardiac electrophysiology and arrhythmogenesis.
期刊介绍:
The European Heart Journal is a renowned international journal that focuses on cardiovascular medicine. It is published weekly and is the official journal of the European Society of Cardiology. This peer-reviewed journal is committed to publishing high-quality clinical and scientific material pertaining to all aspects of cardiovascular medicine. It covers a diverse range of topics including research findings, technical evaluations, and reviews. Moreover, the journal serves as a platform for the exchange of information and discussions on various aspects of cardiovascular medicine, including educational matters.
In addition to original papers on cardiovascular medicine and surgery, the European Heart Journal also presents reviews, clinical perspectives, ESC Guidelines, and editorial articles that highlight recent advancements in cardiology. Additionally, the journal actively encourages readers to share their thoughts and opinions through correspondence.