Yihan Ye, Bing Bai, Yilun Ding, Xinzhe Li, Feng Jiao, Jianping Xiao, Xiulian Pan
{"title":"通过反应相图分析和机器学习加速合成气转化的氧化物-沸石催化剂设计","authors":"Yihan Ye, Bing Bai, Yilun Ding, Xinzhe Li, Feng Jiao, Jianping Xiao, Xiulian Pan","doi":"10.1002/anie.202505589","DOIUrl":null,"url":null,"abstract":"<p>Oxide-zeolite (OXZEO) catalyst design concept provides an alternative approach for the direct syngas-to-olefins (STO) with superior selectivity. Enhancing the activity of oxide components remains a critical and long-pursued target in this field. However, rational design strategies for optimizing oxides and improving the catalyst performance in such complex reaction networks are still lacking. We employed energetic descriptors such as the adsorption energies of CO* and O* (<i>G</i><sub>ad</sub>CO* and <i>G</i><sub>ad</sub>O*) through reaction phase diagram (RPD) analysis to predict the catalyst performance. The prediction was initially validated by the catalytic activity trends measured by experiments. Machine learning (ML) was further utilized to accelerate the screening of new catalysts. Ultimately, Bi-doped and Sb-doped ZnCrO<sub>x</sub> were theoretically predicted as optimized oxide candidates for the OXZEO reaction, which was experimentally verified to be more active than the currently best ZnCrO<sub>x</sub> counterpart. This work demonstrated enhanced OXZEO catalysts for STO as well as a research paradigm integrating theory and experiment to optimize bifunctional catalysts for complex reaction networks.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 25","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Oxide-Zeolite Catalyst Design for Syngas Conversion by Reaction Phase Diagram Analysis and Machine Learning\",\"authors\":\"Yihan Ye, Bing Bai, Yilun Ding, Xinzhe Li, Feng Jiao, Jianping Xiao, Xiulian Pan\",\"doi\":\"10.1002/anie.202505589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oxide-zeolite (OXZEO) catalyst design concept provides an alternative approach for the direct syngas-to-olefins (STO) with superior selectivity. Enhancing the activity of oxide components remains a critical and long-pursued target in this field. However, rational design strategies for optimizing oxides and improving the catalyst performance in such complex reaction networks are still lacking. We employed energetic descriptors such as the adsorption energies of CO* and O* (<i>G</i><sub>ad</sub>CO* and <i>G</i><sub>ad</sub>O*) through reaction phase diagram (RPD) analysis to predict the catalyst performance. The prediction was initially validated by the catalytic activity trends measured by experiments. Machine learning (ML) was further utilized to accelerate the screening of new catalysts. Ultimately, Bi-doped and Sb-doped ZnCrO<sub>x</sub> were theoretically predicted as optimized oxide candidates for the OXZEO reaction, which was experimentally verified to be more active than the currently best ZnCrO<sub>x</sub> counterpart. This work demonstrated enhanced OXZEO catalysts for STO as well as a research paradigm integrating theory and experiment to optimize bifunctional catalysts for complex reaction networks.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 25\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505589\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505589","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerated Oxide-Zeolite Catalyst Design for Syngas Conversion by Reaction Phase Diagram Analysis and Machine Learning
Oxide-zeolite (OXZEO) catalyst design concept provides an alternative approach for the direct syngas-to-olefins (STO) with superior selectivity. Enhancing the activity of oxide components remains a critical and long-pursued target in this field. However, rational design strategies for optimizing oxides and improving the catalyst performance in such complex reaction networks are still lacking. We employed energetic descriptors such as the adsorption energies of CO* and O* (GadCO* and GadO*) through reaction phase diagram (RPD) analysis to predict the catalyst performance. The prediction was initially validated by the catalytic activity trends measured by experiments. Machine learning (ML) was further utilized to accelerate the screening of new catalysts. Ultimately, Bi-doped and Sb-doped ZnCrOx were theoretically predicted as optimized oxide candidates for the OXZEO reaction, which was experimentally verified to be more active than the currently best ZnCrOx counterpart. This work demonstrated enhanced OXZEO catalysts for STO as well as a research paradigm integrating theory and experiment to optimize bifunctional catalysts for complex reaction networks.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.