Ji-Woo Park, Yeo-Eun Yun, Jin Ah Cho, Su-In Yoon, Su-A In, Eun-Jin Park, Min-Soo Kim
{"title":"新鲜蔬菜叶根球病毒的特性及其向人体肠道转移的可能性","authors":"Ji-Woo Park, Yeo-Eun Yun, Jin Ah Cho, Su-In Yoon, Su-A In, Eun-Jin Park, Min-Soo Kim","doi":"10.1038/s41467-025-58856-6","DOIUrl":null,"url":null,"abstract":"<p>Fresh vegetables harbor diverse microorganisms on leaf surfaces, yet their viral communities remain unexplored. We investigate the diversity and ecology of phyllosphere viromes of six leafy green vegetables using virus-like particle (VLP) enrichment and shotgun metagenome sequencing. On average, 9.2 × 10<sup>7</sup> viruses are present per gram of leaf tissue. The majority (93.1 ± 6.2%) of these viruses are taxonomically unclassified. Virome compositions are distinct among vegetable types and exhibit temporal variations. Virulent phages with replication-enhancing auxiliary metabolic genes (AMGs) are more dominant than temperate phages with host fitness-benefiting AMGs. Analysis of 1498 human fecal VLP metagenomes reveals that approximately 10% of vegetable viruses are present in the human gut virome, including viruses commonly observed in multiple studies. These gut-associated vegetable viruses are enriched with short-term vegetable intake, and depleted in individuals with metabolic and immunologic disorders. Overall, this study elucidates the ecological contribution of the fresh vegetable virome to human gut virome diversity.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"4 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the phyllosphere virome of fresh vegetables and potential transfer to the human gut\",\"authors\":\"Ji-Woo Park, Yeo-Eun Yun, Jin Ah Cho, Su-In Yoon, Su-A In, Eun-Jin Park, Min-Soo Kim\",\"doi\":\"10.1038/s41467-025-58856-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fresh vegetables harbor diverse microorganisms on leaf surfaces, yet their viral communities remain unexplored. We investigate the diversity and ecology of phyllosphere viromes of six leafy green vegetables using virus-like particle (VLP) enrichment and shotgun metagenome sequencing. On average, 9.2 × 10<sup>7</sup> viruses are present per gram of leaf tissue. The majority (93.1 ± 6.2%) of these viruses are taxonomically unclassified. Virome compositions are distinct among vegetable types and exhibit temporal variations. Virulent phages with replication-enhancing auxiliary metabolic genes (AMGs) are more dominant than temperate phages with host fitness-benefiting AMGs. Analysis of 1498 human fecal VLP metagenomes reveals that approximately 10% of vegetable viruses are present in the human gut virome, including viruses commonly observed in multiple studies. These gut-associated vegetable viruses are enriched with short-term vegetable intake, and depleted in individuals with metabolic and immunologic disorders. Overall, this study elucidates the ecological contribution of the fresh vegetable virome to human gut virome diversity.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58856-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58856-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Characterization of the phyllosphere virome of fresh vegetables and potential transfer to the human gut
Fresh vegetables harbor diverse microorganisms on leaf surfaces, yet their viral communities remain unexplored. We investigate the diversity and ecology of phyllosphere viromes of six leafy green vegetables using virus-like particle (VLP) enrichment and shotgun metagenome sequencing. On average, 9.2 × 107 viruses are present per gram of leaf tissue. The majority (93.1 ± 6.2%) of these viruses are taxonomically unclassified. Virome compositions are distinct among vegetable types and exhibit temporal variations. Virulent phages with replication-enhancing auxiliary metabolic genes (AMGs) are more dominant than temperate phages with host fitness-benefiting AMGs. Analysis of 1498 human fecal VLP metagenomes reveals that approximately 10% of vegetable viruses are present in the human gut virome, including viruses commonly observed in multiple studies. These gut-associated vegetable viruses are enriched with short-term vegetable intake, and depleted in individuals with metabolic and immunologic disorders. Overall, this study elucidates the ecological contribution of the fresh vegetable virome to human gut virome diversity.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.